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A Theory of Fatigue: A Physical
Approach With Application to
e | Lead-Rich Solder

I-Llfelg(!”mz(,?sﬁg A fatigue theory with its failure criterion based on physical damage mechanisms is pre-
sented for solders. The theory applies Mura’s micromechanical fatigue model to indi-
Department of Civil Engineering, vidual grains of the solder structure. By introducing grain orientation (Schmid factor m)
Northwestern University, into the fatigue formula, an m-N curve at constant loading, similar to a fatigue S-N curve,
2145 Sheridan Road, is suggested for fatigue failure of grains with different orientations. A solder structure is
Evanston, 1L 60201 defined as fatigued when the ratio of its failed grains reaches a critical threshold, since at
this threshold the failed grains may form a cluster, according to percolation theory.
Experimental data for 96.5Pb-3.5Sn (wt. %) solder bulk specimens showed good agree-
ment with the theory and its associated failure criterion. The theory is anisotropic, and
there is no size limitation to its application, which could be suitable for anisotropic
small-scale (micron scale or smaller) solder jointsDOI: 10.1115/1.1412453
1 Introduction potential to connect the fatigue data from bulk specimen testing

Sold " in electroni Kaai ted t with the fatigue phenomena of meso-scale solder joints and the
older connections in electronic packaging are expected to hec. <o fatigue of individual grains.

come smaller and smaller. Today, the characteristic size of a soldeg g gers in electronic packaging typically have low melting

joint in flip chip packaging is about a few hundred microns. Acpoints, and room temperature can be a “high” temperature. For
cording to the Semiconductor Industry Associatiof88A) road-  example, 25°C gived/T,,=0.65 for 63Sn-37Pkjwt. %) solder,
map ([1]), this size will decrease further into a few microns ofhereT,, is the absolute melting temperature. Fatigue phenomena
even nanometer scale in future. It is well know that fatigue aff solders are thus very complicated. For example, the plastic
such small joints is different from that of the bulk specimerstrain based Coffin-Manson relationship does not hold for 96.5Pb-
Therefore, the empirical fatigue formula derived from experimer8.5Sn (wt. %) solder ([3]). Experimental results show that PSB
tal data of bulk specimens, which are statistically isotropic, mdprm in the material when the device is under cyclic loading at the
not realistically predict life for such small joints. However, it isoperating temperature range, and thereafter, microcracks form
very difficult, if not impossible, to conduct fatigue tests on aiVithin PSB due to increment of dislocation density or along grain
individual small solder joint to derive an empirical fatigue foroundaries because of the impingement of the PSB on the grain
mula. On the other hand, even if such tests are performed and ndaries. These microcracks are usually confined to be within

empirical fatigue formula derived as a result, the application dpe grains or along grain boundaries, and do not coalesce and form

the formula to joints of different sizes is still questionable. A fadl® dominant macrocrack that Ieacjs to f.racture of the solder struc-
ure. Instead, the number of grains with such microcracks in-

tigue theory without size limitation is therefore needed, so that i Seases in a percolating manner, and the solder structure deterio-

fatigue parameters can be determined from tests of bulk speCitag ot necessarily showing a drop in load carrying ability until

mens with the size effect built into the formula. To our knowlsome critical point is reached. Figure 1 illustrates such a fatigue

edge, there has been no fatigue theory and its corresponding @fRscess. The solder specimen shows a load range increment until
pirical formula that incorporates a size effe@.g., see review 3 certain point is reached. The specimen used in this test was
article of the current fatigue theories for solders, Lee, ef2). made from 96.5Pb-3.5Sfwt. %) solder and subjected to strain-
The theory presented here begins with fatigue behavior of an igentrolled cyclic loading. After about 6800 cycles, the experiment
dividual grain, which is caused by microcracking within its perwas stopped and the surface of the specimen was investigated
sistent slip band$PSB. The PSB are formed by motion of slip under an optical microscope. Figure 2 shows that the once very
planes, and these motions can occur only in particular directiorssnooth surface at the onset of testing becomes full of macroc-
where such motion is related to the magnitude of local resolvédcks, microcracks, extrusions, and intrusions. Also the specimen
shear stress on the slip planes. Therefore, resolved shear stre§@fisbe seen to begin to lose its load-carrying ability during the
the key parameter to characterize the fatigue behavior of an infinal stage, in an accelerated way, although a certain amount of
vidual grain, and the fatigue of an individual grain is anisotropito@d could still be carried. _ ,

at the micro scale. At the same time, the theory treats a bquG'Verf the .exp.erlmental fmdmgs contained here and n other
specimen as an agglomeration of such individually amisotrop?x’:mOlrS publ|cat|pn$[4—8]), a fatigue .the.ory based on disloca-
grains. Statistically, such an agglomeration is isotropic, and tﬂgn and percolation damage mechanics is developed. The theory

micro-scale anisotropy disappears. Therefore. the theorv has Ssumes the following1) Local resolved shear stress in the crys-
Py ppears. ; y Fslip plane causes PSB and thus the microcracks’ formation
_ within the PSB, and the magnitude of the stress differs for grains
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF or cells of different crystallographlc orlentatloﬁz) Microcracks
MECHANICAL ENGINEERSfor publication in the ASME QURNAL oF AppLiEDME- 0O NOt propagate but rather remain where they appear and fracture
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March 7the grains or cells locally. The number of failed grains or cells
2001; final revision, June 8, 2001. Associate Editor: M.-J. Pindera. Discussion on fprereases within the solder structur@) The portion of such
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Department#ﬁ,fains or cells reaches a threshold value at which point the entire
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi . . .
be accepted until four months after final publication of the paper itself in the asmgtructure becomes unstable. At this value the failed grains may
JOURNAL OF APPLIED MECHANICS. form a large cluster or macrocrack.
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Strain controlled tension-tension fatigue
for 96.5Pb-3.53n solder

ZOE with strain range of 0.006 at 25°C
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Fig. 1 Cyclic peak stresses plot for 96.5Pb-3.5Sn solder

In the following sections, fatigue of an individual grain is first Lin and Ito suggested a ratcheting or gating mechanism for the
discussed. A fatigue theory with its definition of fatigue criterioriormation of PSB([11]). Using the same idea, Mura and cowork-
for solders is presented. Finally, the experimental results fers([12—14]) have further developed a micromechanical model to
96.5Pb-3.5Sr{wt. %) solder bulk specimens are given as a veriguantitatively analyze the microcracking process within the PSB
fication of the theory. using dislocation theory. In the Mura model, PSB formation re-
sults from dislocation density increment in two adjacent but re-

. . .. versely gliding slip layers during the cyclic loading. At the same
2 Dislocations, PSB, and the Critical Number of 0 "change of the Gibb's free energy increases as the dislocation
Cycles for Microcrack Initiation energy increases because of the dislocation increment. At a certain

When ductile materials are subjected to cyclic loading, dislocROint, the Gibb’s free energy change reaches a maximum and
tions appear first and are followed by PSB formation within theffticrocracking occurs within the PSB. This cycle number is de-
grains. If the grains’ facets are a free surface, so-called extrusidied as the fatigue point. The Mura model is able to produce the
and intrusions will appear in the form of striation as the PSEatigue S-N curve, to capture the grain size effect and to incorpo-
strike the free surface. Foryfi9] first reported this phenomenon'ate material properties such as surface energy density, critical
for an aluminum-copper alloy. Later, many researchers worked 8iftion stresses, and others. Briefly, similar to the Griffith theory
a variety of other metals and have found that the phenomentf crack initiation in linear elastic fracture mechanitEFM),
exists for most of the FCC, BCC, and some of the HCP metalfie Mura model proposes fatigue microcrack initiation based on
Experimental results from Vaynmdii] and Lawsor{8] showed the Gibb’s free energy change:
striation on the surface of fatigued 96.5Pb-3.5Sn solder specimens .

(Fig. 3. The striation was also found to appear on the fatigued AG=—-W,—W,+2cy (1)
tin-silver and tin-zinc eutectic solder specimeéhi0]).

a
5 (AG)=0 (1)

where W, is the mechanical energy releasafil; is the energy
release from the loss of lattice defects—dislocations—at the
nucleation site;y is the free surface energg;is the length of the
initiated two-dimensional crack; and is the cycle number. In
([15]), Fine expanded the above theory to a three-dimensional
penny-shaped mode | crack in the study of fatigue at elevated
temperature by rewriting Eqla) as

AG=—W,;—W,+2yA (10)

where A is the surface area of the initiated three-dimensional
crack. For solders, local unidirectional shear stress is the dominant
factor to initiate a microcrack within a grain or along grain facets.
The initiated microcrack is therefore a combined mode Il and IlI
type. For simplicity, assume the initiated microcrack is a penny-
shaped three-dimensional microcrack. This mechanical energy re-
leased is given by integrating the energy released along with the
crack growth as the following:

Fig. 2 Microcracks appeared on the surface of a 96.5Pb-3.5Sn
solder specimen after about 6800 cycles under strain- W
controlled fatigue test (25°C, A&=0.006) 1

B 64(1—v’)A7%a®
T 3(2-v)E 2)
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64(1—v’)Ar?a®
-~ 3(2-vE
Following Mura et al.[12], the total number of dislocations

measured along the diameter of the to-be-nucleated penny-shaped
crack is

AG= +2m(y—yg)a. 4

2(1—v)(A7—27)dn
ub

where7; is the friction stressais a characteristic grain sizb,is
Burger’s vector, andu is the shear modulus. The radius of the
nucleated crack is therefore

N= (5a)

a=—-Nb=———(A7r—27)dn. (5b)
Substitution of(5b) into (4) and the results into ) gives

(2= m(y—ya)E?
cr— P— .
31— v?)2d(A7—271)A7

Equation(6) gives the number of cycles at which a microcrack
initiates within the PSB or_on the grain facets. The dislocation
energy densityyy, grain sized, and local resolved shear stress
within the cracking plane are seen to strongly influenge

For solders, the critical friction stress is small compared to its
operation stress loading. It is assumed henceforth Ahat 2 7;
and 7; can be neglected, i.eA7—27;~A7. Under this assump-
tion, Eq.(6) becomes

(6)

s (2=)7(y—ygE?

N A7 — (7a)
32(1-v%)%
Introducing shear strengthy, into Eq. (7a), we may rewrite
A7)P 2=w)7m (y—y0)E?
crl /| T p— . (7b)
Ty 321-v%)2 g3

y

The right-hand side of Eq(7b) is a constant, and Ed7b)
results from the assumption of a penny-shape crack loaded in
unidirectional shear. Within a real solder structure, the geometry
of microcracks varies and microcrack modes and energy release
rate may not be as simple. To make Etp) more general, assume
AT) 7

Ner =C. (7¢)

Ty

Here, » and C are material constants. Equatidvic) gives the
critical number of cycles for a grain to develop microcracks in its
PSB or along its boundaries.

(b)

Fig. 3 (a) Striations on the surface of a 96.5Pb-3.5Sn solder 3 Local Resolved Shear Stress, Crystallographic Ori-

specimen after strain-controlled isothermal fatigue test entation, and Fatigue of an Individual Grain

(adopted from S. Vaynman’s Ph.D. dissertation [7], Fig. 45); (b) . . .
microcracked grain after strain controlled thermomechanical Solders are materials with high homologous temperatures. Sol-

fatigue test (adopted from L. Lawson’s Ph.D. dissertation [8], der connections thus operate at a relatively high temperature
Fig. 17) range, which causes glide of the slip systems within its grains to
become easier since the flow stress is low. Dislocations occur
easier with the assistance of thermal activation, but at the same
time so does the annihilation of dislocations and recovery. These

whereE is the Young’s modulusy is the Poisson’s ratia\ r is the factors help to confine the PSB to be within the grains. Lin et al.
shear stress range within the crack plane, aigithe radius of the [16], studied the possibility of a fatigue band crossing a grain

formed microcrack. The energy released from the loss of latti@undary and concluded that fatigue band is less likely to cross
defects keeps Fine’s forii15]): the grain boundary if the orientation of the neighboring grain dif-

fers by more than 5 deg. The bands were actually stopped from

crossing the grain boundary when the misorientation is greater

than 10 deg, an angle not uncommon between the grains within a

real structure. It is also believed that at high homologous tempera-

where yq is defined as dislocation energy per unit area @&nd ture, grain boundaries are obstacles to PSB, and as a result, PSB
= 7ra®. Substituting(2) and (3) into (1c) gives are confined to be within the grain. If microcracking occurs within

Wo=27y4A, ®)
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Fig. 5 Schmid factor m for a slip system within a crystal that
undergoes uniaxial loading

022

Fig. 4 The originally smooth surface of 96.5Pb-3.5Sn solder
specimen now shows an agglomeration of extrusions, intru-
sions, striations of PSB and microcracks, with the pattern ori-
enting at roughly 45 deg to the loading axis (vertical )

The resolved shear stress rangeunder cyclic loading condi-
tion is given by the following:

the PSB, the newly created microcracks will also be confined to Ar=m|S,—S. (11a)

within the grain. If on the other hand a microcrack does not form ere subscripts “1” and “2” refer to the two extremes of the
within the PSB, the strain energy there is not released. Under t’%{' P

condition, the PSB impinge and produce microcracking alo rel_ss Iload!ng space. It is assumed rhadloes ?Ot |°haf_‘99 dﬁ“ng

grain boundaries. If the grain boundaries are a free surface, t ic loading. Under one-dlmensmna cyclic oad.lng, the re-

extrusion-intrusion will occur. Figure 4 shows the originallySO ved shear stress range can be written as follows:

smooth surface of a high lead solder at the end of a strain- Ar=m|oy— oy. (11b)

controlled fatigue test. The experiment was carried out at room . . o

temperature T/T,,=~0.5). The surface shows an agglomeration of .SUbSC”ptS 1 and _2 correspo_nd to the valley and _pea_k

extrusions, intrusions, striations of PSB and microcracks. The ¢fints of cyclic loading, respectively. If the load ratio is

glomerates pattern also can be seen to orient at roughly 45 de 6"1/“26 [~1.], then

the loading axis(vertical, which is the maximum shear stress Ar=m(1-R)|o]. (12)

direction. There are many more experimental findif{@s8,10), o .

all of which suggest that microcracking within solders is a locaSuPstituting Eq(11b) into Eq. (7c),

ized phenomenon, and occurs within a grain and/or along grain lo,—a|\ 7

boundaries. According to Ed7c), the shear stress range has a or ”(—) =C. (133)

strong influence on the number of cycles required to initiate a

microcrack within the PSB. The local resolved shear stress rangegeneral,

on the grain’s active slip systems will then be investigated to ”

quantify the microcracking within the PSB of an individual grain. n m"( “SZ*SIH) =C (1)
When a grain is subjected to a far field stress, the resolved shear er Ty ’

stresses on its slip systems vary. For example, an FCC crystal h

12 active slip system§17]). Under certain loading conditions,

the resolved shear stresses on these slip systems could differ

stantially (see Table 1 in Lif18] and Examplg2.3.) in Suresh

[19]). A slip system consists of a glide plane and a slip direction. “crm":C(

Two vectors can thus characterize the systag: the normal to

the glide plane, andg, the slip direction. Assume that the system

undergoes loadingr, the resolved shear stres®n the system is

Ty

@ urther, under the same loading condition, iler,— o] re-
Snl]%i_ns constant:

o,— o)\ 7
low—onl] e, a0

Ty

0.6
T=Ng: 0 Ng. (8)
It is well known that hydrostatic stress does not contribute to the | ———— : 1
resolved shear stress. Equati@) can be rewritten as follows: - | il 1
1 5 |
7=ng- | S+ §<Tkk| ‘Ng=ng-S-ng=m|§| 9) 3 :
T
whereS is the deviatoric stres§= o— 3 tr(a)l; mis the Schmid E 0.2 {
factor; and|d| is a form of norm. When a crystal undergoes 8 f
uniaxial loading, the Schmid factan of a slip system varies :
between 0.0 and 0.5%If the direction ofo,,, 7,, ando, lie in the 0.0 |\ Mmin | Log(ner)
same plane, them,= 0.5 sin Zva,,= Mo, Fig. 5. Dingli [20] -
used a second-order Schmid tensuar,to get the resolved shear Cycles to crack initiation
stress:
Fig. 6 The Schmid factor and the critical number of cycles to
T=m:.o. (10) initiate a microcrack: m-N curve

4 | Vol. 69, JANUARY 2002 Transactions of the ASME



tions on the surface are evident. Striations are traces of slip plane
motion, and striation directions demonstrate the motion directions.
The photos show clearly that striation directions differ for differ-
ent grains. Other authof23-26)) also reported cyclic behavior’s
dependence on crystallographic orientation.

A large enough polycrystalline structure consists of numerous
crystallites or grains. Individual grains are oriented in different
directions and thus have a different Schmid factpwhich leads
to microcracking to occur at a different number of cycles accord-
ing to Eq.(14). It is assumed that the newly nucleated microcrack
or family of microcracks extends immediately to the extremities
of the grain. The grain is thus defined to be fatigued or failed at
this point. This assumption is reasonable for solders since its ap-
plication is usually associated with small size grains and a micro-
crack extends to the extremities very quickly.

. 417
. 408
[110]

4 Fatigue Theory for Solders
Fig. 7 Contours of a constant Schmid factor for uniaxial ten- . . .
sion based on {111}110) slip (reproduced with modification Currently, there are three types of fatigue theories for solders:

from Fig. 2 ([21])) strain based, energy density based, and damage Has8d. The
goal of these theories is to derive empirical fatigue formula from
the testing of bulk specimens and to use the derived formula to
redict fatigue life of small solder joints. However, microme-
anical research shows that the representative size that such for-

mulas can apply is larger than even the size of current solder

Within. the PSB whelz the Ioadirgjg remains C(I)nsctjant: If glo_tlfﬁd, t Sints ([27,28)), and the anisotropic nature of actual solder joints
equation gives am-N curve under constant loadiriig. 6. The a5 ot heen included. Moreover, the fatigue criteria are more or

gurr\]/e .(éafn bte interplreted ?hs sirtnilar t%a S'Z‘. curtveizgxcgpt ti&at iggs arbitrarily defined without a physical damage based, and thus
chmid Tactorm replaces the stress. According 10 FIg. ©, Under &y giffer from application to application. In the following sub-

giver_l load condition, if a sing_le crys_tal ori_ents itself in such aWayactions, a physical damage based fatigue criterion is presented,
that its ny and ns for the major active slip systems make theigy 04’ by the formulation of the fatigue theory.
Schmid factorsm a minimum, the crystal will have the longest

fatigue life. As an example, Fig. 7 shows the Schmid factor con- 4.1 Fatigue Criterion for Solders. A strain-controlled test

tour for a FCC crystal under uniaxial tension basedi}(110 is typically used to study fatigue of solders, and the peak stress
slip systemreproduced with modification from Fig.[21]). tcan change, peak stress range change, or the area enclosed by stress-
be seen that the Schmid factor varies from 0.272 to 0.5, dependsitpin hysteresis loop change is recorded. The fatigue criterion is
on the crystal’s orientation towards the loading axisy# 3, the thus defined by the value of these changes. Figures 1 and 8 show
critical cycle number to initiate a crack within the grain couldhe peak stress curves of two solders, and Fig. 9 sketches general
differ by as much as six times by changing its orientation. Yueases of such curves. In Fig. 9, curve A is a representative shape
[22] showed the fatigue striations, microcracks in these striatiorfey eutectic PbSn solders, while curves B and C are for Pb rich
and their dependence on the crystallographic orientatieqsiva- PbSn solders. It can be seen that a specific solder can exhibit
lently, the Schmid factom) by performing experiments on nickel- either cyclic hardening or softening behavior or both under differ-
base single crystal superalloy specimens. Figure 3 shows tewot loading conditions. If the fatigue criterion is defined as a cer-
SEM photos of the surfaces of fatigued solder specinfezf@o- tain value of peak stress drop, it is not applicable to the cases of
duced from Vaynmanh7] and Lawsor{8]). Closely packed stria- cyclic hardening(Curve B and ¢ since no drop occurs in these

Equation(14) indicates that the Schmid factor m has a decisi
effect on the critical cycle numbenr,, for microcrack initiation

Fully reversed shear strain controlled fatigue
for 97.1Pb-1.5Ag-1.48n solder

20 with strain amplitude of 0.06 at 25°C

10 |-
- I
3 i
= I
@ 0—_ —M@— Minimum Peak Stresses
@ L [l Magnitude of minimum peak stresses
o - —&A—— Maximum peak stresses
H i
ks i
_10 -
_ Ll L N |
2%00 10* 10 10°

Number of Cycles

Fig. 8 Peak shear stresses change with number of cycles for silver modified PbSn
solder with a strain rate of 0.003 /sec (data taken from J. Liang et al., Fig. 7 (a)([38]))
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Fig. 9 Peak stresses evolution during fatigue testing and defi-
nition of fatigue point Fig. 10 Fatigue process illustration when stresses are as-
sumed uniform throughout the structure

cases. On the other hand, if the fatigue criterion is defined as the

onset point of peak stress drop during cyclic hardening, it is defi- f(m)dm=
nitely not applicable to the cyclic softening casgurve A) since

the onset point is near the beginning of the test. Moreover, in thghereV is the total number of grains, amde [ m,,m,]. Heremy

case of curve C, there are two onset peak stress drop points, @Agm, are the minimum and the maximum Schmid factors, re-
an arbitrary pick of one is inevitable. Clearly, a fatigue criteriopectively. If it is further assumed that each grain has the same
that is reasonably applicable to all cases is needed. In this paggjiume, therdV(m) andV can be the total volume of grains with
the fatigue point is defined as the onset point where a sharp p&qmid factorm and the total volume of the structure. For a
stress drop begins. Two straight lines tangential to the curve segructure with numerous graing(m) is assumed to be continuous
ments on each side of the onset point are drawn, and the abscggaimplicity in analysis.

of the crossing point of these two straight lines is defined as theaccording to Eq(13a) and the percolation theory based fatigue
fatigue point. According to this fatigue criterion, points, criterion defined previously, the fatigue theory can be stated as
N¢g, and N¢c are the fatigue points for curves A, B, and Ciollows:

dV(m)

(15)

respectively(Fig. 9. This criterion has as its physical basis on the loy— |7

percolation damage mechanism. As discussed in Section 1, solders mefﬂ( 2 V) —¢ (16)

develop microcracks during the cyclic process. These microcracks y

either appear in the PSB within the grains or along gain boundith

aries. According to percolation theory, a cluster of microcracked my

grains or macrocracks may form and the material becomes un- f f(mdm=p,. a7
mg

stable when the portion of these microcracked grains or the den-
sity of microcracks reaches the percolation threshold. The onset ofjere, according to percolation theony, is the percolation

a sharp peak stress drop is the initiation of such an unstable st@geshold. Figure 10 is a sketch that describes the theory, where
Stolkarts et aI[G] and Guo et a|[29] applled a similar fatlgue the shaded area depicts the fatigue process. The Va|p§ oé-
criterion to a near eutectic PbSn solder with successful resultsplnds on the crystal type and on the percolation model chosen to
must be further pOInted out that this criterion is conservative. describe the failure mode. For So|ders’ if intergranu|ar microc-
racking dominates, bond percolation would be more appropriate.

material and a solder structure is an aggregation of crystallitesdpWever, if microcracking ‘occurs predominantly within the
grains of different sizes and orientations. A bulk solder specim@dins. site percolation would be the best model to use. For ex-
consists of numerous crystallites or grains with their orientatior®"P!€; high lead solder can be modeled as a FCC structure with
randomly distributed, while small-scale solder joints consist ofte Percolation, ang.=0.3116([30)). . .
limited number of grains and the orientations of these grains ex-!f f(M) is known, Eq.(17) is easy to use by integrating and
hibit a preferred distribution. In Section 3 it was noted that thg0!Ving form; . Bulk specimens are statistically homogenous and
orientation difference results in the Schmid factor difference if tHgOrOPIC, and it is therefore reasonable to assume
major loadings or stresses on these grains fall within a similar 1
range, leading to a difference of critical number of cycles of fa- f(m)= m—mg’
tigue or failure among grains. Grains with largefail at a lower T : : . .
number of cycles, while those with lower fail at a higher num- Si?/gztltu“ng Eq(18) into Eq.(17), integrating and solving fom
ber of cycles. Along with the cyclic loading process, more an%
more grains become fatigued or failed due to microcracking. M¢=pPcMo+(1—pc)my. (19)
Since the failure of grains is a highly localized phenomenon, threurther substitution of Eq19) into Eq.(16) gives the fatigue life
fatigue of a structure can be viewed as the result of a seriesf as
such localized and independent failure events. C

Let V(m) be the total number of those grains that have Schmid N¢= . 7
factor m, and f(m) be the grain Schmid distribution function (PeMo+(1=pc)my )
(GSDB or grain orientation distribution functiolGODF). Then Equations(18)—(20) are not applicable for meso/micro-scale
f(m) is defined as follows: structures that are inhomogeneous and/or anisotropic, since the

4.2 Fatigue Theory for Solders. Solder is a polycrystalline

(18)

Ty 7
Haz—oln) : (20)

6 / Vol. 69, JANUARY 2002 Transactions of the ASME



Fatigue data at 25°C

0.008 = for 96.5Pb-3.5Sn solder
- \\\ Regression R=0.95
0.006 |- ~n
r | | ~a N
o] I ~
5 L
I L < H
o LS
U)O'004 d ~
- ~
3 L =~
2 RN
a L
LI L
5 [
®0.002 - ~
9 [ |
5 L
B Data
| ~—— —— Regression Trend
. [ I TR I |
10000 20000 3000040000

Number of Cycles to Failure

(a)

Fatigue data at 25°C

sor for 96.5Pb-3.58n solder
i Regression R=0.98
g wo|
E i |
Y i
g | | |
]
o4 3
u
u 30
[V}
g - [
%]
m L
v
[ B [ ] Data
= —— Regression Trend
20 . . P B P IR W |
10000 20000 3000040000
(b) Number of Cycles to Failure
0.04 TMF fatigue data 25-80°C
0.03 Faa for 96.5Pb-3.58n solder
RN Ramp time 120 sec.
r ~ Regression R=0.98
g0-02r | | | el
-~ - \\
gt ~
By ol N
0.01 p
~
9 - \\!.
B i ~
i S
g "~
H i >~
\\
5 ~-
M ~
B i n Data m
————— Regression Trend
. . . R SR I
500 1000 1500
Number of Cycles to Failure
(9
Fig. 11 (a) Fatigue and inelastic strain under strain-controlled isothermal fatigue test (&min=0, ramp =2.5s, partial data from S.
Vaynman ); (b) fatigue and stresses under strain-controlled isothermal fatigue test (&min=0, ramp=2.5s, partial data from S.

Vaynman ); (c) fatigue and inelastic strain under strain-controlled thermomechanical fatigue testing—conducted by L. Lawson
during 1987-1989; (d) fatigue and stresses range under strain-controlled thermomechanical fatigue testing—conducted by L.
Lawson during 1987-1989; (e) fatigue and inelastic strain under isothermal and thermomechanical fatigue testing—conducted by

L. Lawson during 1987-1989 (temperatures are 15-60°C, 25—-80°C, 60°C, 80°C, and 100°C; strain ranges from 0.3-3 percent; strain
rate from 1.15 X1075~3.0X107%s™1); (f) fatigue and true stresses under isothermal and thermomechanical fatigue testing—
conducted by L. Lawson during 1987-1989  (temperatures are 15-60°C, 25—-80°C, 60°C, 80°C, and 100°C; strain ranges from 0.3-3
percent; strain rate from 1.15 X1075~3.0X107%s7})
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Fig. 11 Continued

structure consists of only limited number of grains difdh) is
not continuous. Equatiof17) must be used to solve fon; in this

ical study, experimental measurement reconstruction, and compu-
tational simulation have been used to obtain the grain orientation

case, and the anisotropy must be brought into the fatigue formudistribution function for polycrystalline structures for various ap-
It is not too difficult to getf(m) for these applications: Theoret- plications([31-34)).
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Table 1 The coefficients of the log  (Aa)~log N;plots (log(Ae)=a+blog Ny and
the strain-based Coffin-Manson type log (&")~log N; plots (log(e")=c
+dlog Ny

Strain-based

This Theory Coffin-Manson

Experimental Data

a b c d
S. Vaynman during 1985-1987, _ _ _
together with this study, for 25°C 2.03 0.14 0.8 0.43
25-80°C 1.73 -0.15 [ -0.61 -0.66

L. Lawson
During 1987-1989

TMF! & ISO® mix | 1.75 | -0.17 | -0.66 | -0.61

!Thermomechanical Fatigue testing
’Tsothermal fatigue testing

Equation(20) also shows that the fatigue life can be optimizedions, which is what the theory anticipates as it is based on physi-
by controlling the grain orientations of a structure during the metal damage mechanism. However, the coefficients from Figs.
allurgical process. Indeed, the texture and grain orientations cila), (c), and(e) are not as close. Especially, the slopes differ as
be controlled for casting and deposited structuf&$]), espe- much as 35 percent. Note that a single strain-based Coffin-
cially in today’s electronic industry where structures such as filmsjanson type formula does not fit fatigue data well for both
and solder joints are cast or deposited. 96.5Pb-3.5Sn and 63Sn-37Pb soldgirs29)).

The coefficientsC and » can be solved as

5 Application to 96.5Pb-3.5Sn Solder

The isothermal and thermomechanical fatigue data of a lead
rich 96.5Pb-3.5Sn solder were used to verify the fatigue theory _ 1 : (21)
and its associated fatigue criterion. Bulk specimens were tested
under uniaxial tension-tension strain-controlled conditions with
triangular waveform strain. Most of the experiments were con- If a and b are taken as the average values from Table 1 for
ducted during the period from 1985 to 1989 by S. Vaynman and 86.5Pb-3.5Sn solder, = 11.7MPa([37]), through Eq(21), C and
Lawson at Northwestern University. The raw data are in analogcan be calculated ou€=4.12< 10?, and »=6.52. These two
form from paper charts taken from an X-Y recorder. Additionatoefficients can then be used in Eq$6) and (20) to predict
fatigue tests were performed using digital data acquisition duririgtigue life for 96.5Pb-3.5Sn solder structure. Note that for differ-
this study. The paper charts data and their digital counterpagist size structures, the theory uses a different percolation model to
were found to agree quite well. The specimen preparation, geodeterminef(m) and m;. Thus, the theory does not have a size
etry, machining, pre-testing treatment, testing procedures, aditation and Eq.(17) represents the anisotropic nature that
testing set-ups are reported in publications by S. Vaynman anddhould be included in the fatigue prediction formulas for current
Lawson[7,8,36. and future small-scale structures. Metallurgical control during the

Lead is a FCC crystal, and the grains of 96.5Pb-3.5Sn soldeanufacturing process of solder interconnects may also be used to
can be approximately treated as FCC crystal. According to Fig. dptimize fatigue life by possibly changing the grain orientation or
the Schmid factor varies from 0.272 to 0.5, wp=0.272 and size distribution.
m;= 0.5, depending on the grain’s orientation towards the loadi .
axis. The grains can be approximated as having cubic shape a aConcIusmn
simple cubic structure under site percolation damage model carA fatigue theory for solders is presented. By adopting Mura’s
be used to describe the fatigue of the 96.5Pb-3.5Sn solder bdiklocation energy-assisted microcrack formation theory, crystal-
specimen. In this cas®,.=0.3116([30]). Substituting these co- lographic orientation is connected to fatigue failure through re-
efficients into Eq(19), m; can be calculated as;=0.429. solved shear stresses, andmarN curve under constant loading is

As predicted by Eq(13), the logAa)~log(N;) plots should be suggested. The theory views the fatigue process as a series of
straight lines sincen;=0.429 is a constant for all bulk specimenslocal failure events, while the fatigue of the structure is viewed as
Figures 11b), (d), and(f) are these plots, and they do show thathe percolation result of such local failure events forming a large
straight lines can capture the trend reasonably well under varictlester. The theory includes the anisotropic nature into the fatigue
conditions: Fig. 1b) for isothermal results at 25 °C, Fig. €1 formula and thus can handle the anisotropic small-scale structures
for thermomechanical results, and Fig.(f)1for both isothermal as well as the statistically homogeneous large structures. The fa-
and thermomechanical results. Figureghl and(d) fit the experi- tigue data of 96.5Pb-3.5Sn solder bulk specimens under various
mental data quite well. As comparison, Figs(d)l (c), and(e) uniaxial tension tests were analyzed. Results show that the theory
give the corresponding lag'~log N; plots, which would be used gives good predictions under broad testing conditions. More im-
to fit the data if an inelastic strain-based Coffin-Manson type foportantly, the theory is materials science based so that the param-
mula was employed. It can be seen that straight lines can fit theers of the fatigue formula can be worked out by testing of bulk
data as well. However, it is unclear what is the science base specimens while the formula can be applicable to small structures.
apply the fitting results to conditions that are different from th&he theory suggests metallurgical control during the manufactur-
experimental conditions and what the inelastic strain-basét) process to optimize the fatigue life of small-scale structures.
Coffin-Manson formula would behave in these conditions. Fur;
thermore, Tables 1 gives the fitting results from Figgal4(f). It Acknowledgments
is interesting to see that the coefficients from Figgb}1(d) and The authors would like to thank Prof. Morris E. Fine and Dr.
(f) are surprisingly close even though they are from fitting th8idharth Sidharth for their reading of the manuscript and very
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Scaling of Sea Ice Fracture—Part
I: Vertical Penetration

Based on the premise that large-scale failure of sea ice is governed by fracture mechanics,
recently validated by Dempsey’s in situ tests of fracture specimens of a record-breaking
size, this two-part study applies fracture mechanics and asymptotic approach to obtain
approximate explicit formulas for the size effect in two fundamental problems. In the
present Part |, the load capacity of a floating ice plate subjected to vertical load is
determined, and in Part Il, which follows, the horizontal force exerted by an ice plate
moving against a fixed structure is analyzed in a similar manner. The resulting formulas
for vertical loading agree with previous sophisticated numerical fracture simulations as
well with the limited field tests of vertical penetration that exist. The results contrast with
the classical predictions of material strength or plasticity theories, which in general
exhibit no size effect on the nominal strength of the strucfb®I: 10.1115/1.1429932

Z. P. Bazant
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Professor of Civil Engineering
and Materials Science,
Northwestern University,
Evanston, IL 60208

e-mail: bazant@northwestern.edu
Fellow ASME

1 Introduction spired from the field fracture tests of size effect by Dempsey et al.

Predictions of load capacity and failure of floating sea ice ré-23’24’ the length of the fracturg process zone pf sea ice Is of the
der of several meters for horizontal propagation, while for ver-

quire good understanding of the scaling properties and size effi%rt. | propagation it is roughly 25 cm. Therefore, the cohesive

Because small-scale laboratory tests of sea ice show hardl . . .
y y%r: ck model or some of its approximations must be used. Two

notch sensitivity and do not exhibit fracture mechanics behavi {a_sic types of cohesive crack model need to be distinguishid:

many studies from early to recent times have treated sea ice f . . . h X .
ure according to either plasticity or elasticity theory with Z%]ebrlttle-ductllemodel, in which the stress-displacement relation

strength limit((1—8]). Both theories exhibit no size effect. When'@S & long horizontal yield plateau, terminating by a sharp drop at
size effects were observed in tests, they were generally attribufe@e'tain critical opening displacement, iyl the quasi-brittle
to randomness of material strengéhg.,[9]), captured by Weibull model, in wh|ch_ the cohe_swe crack-bridging s}ress gradually qle-
[10] theory stemming from the qualitative idea of Marioftel] ~ Creases according to a fixed law as a function of the opening
and mathematically justified by extreme value statisfitg]), see displacement. The former was developed Iong ago for metals, and
reviews in, e.9.[13—15. However, the statistical explanation ofthe latter more recently for concretgl5)). It is the latter type
size effect is, for the present problem, dubious because the maiflich appears more appropriate for sea ice. o
mum load is not reached at the initiation of fracture but only after In view of the quasi-brittle behavior, the deterministener-
large stable crack growtfin detail, see, e.g[14,15)). In that case 9etio size effects of quasi-brittle fractur¢14,15,28-3D must
a nonlocal generalization of Weibull theory is requir@tis,17). 9et manifested, and must be expected to be strong, in all the
The nonlocal probabilistic analysis shows that the statistical sipgoblems in which large cracks grow stably prior to reaching the
effect becomes significant only of for very large structures failingiaximum load[33,34)). This includes two fundamental problems
at fracture initiation. Otherwise the energefiteterministi¢ size to be addressed in Parts | and Il of this study:the vertical load
effect dominates. capacity of floating ice platépenetration fractuse and (2) the
Many studies document the brittleness of i@eg.,[18,19). maximum horizontal force exerted on a fixed structure by a mov-
Various recent experiment®20—-22) especially the remarkable in ing ice plate.
situ tests of Dempsey’s team made with record-size specimenshe vertical penetration problem has been analyzed by fracture
([23-26), indicate that on a scale exceeding about 0.5-m sea iggechanics at various levels of sophistication in several recent
does follow cohesivequasi-brittle fracture mechanics, with a works. Baant and Li[35,36 assumed that full-through bending
strong size effect, and on scales larger than about 10 m is venacks propagate radially from the loaded area, but this assump-
well described by linear elastic fracture mechar(icEFM). The tion now appears inapplicable except perhaps for very thin plates
need for fracture mechanics approach and the presence of sizgvhich the horizontal forces due to dome effect nearly vanish.
effect is also suggested by the fact that the experimental logblempsey with co-workerg37], in an elegant analytical solution
deflection diagramgle.g., [8]) exhibit no yield plateau but a of the problem, assumed that the radial cracks at maximum load
gradual softening, i.e., a decrease of load with increasing deflegnanating from the loaded area reach through only a part of the
tion after the peak load has been reached. Analysis of acouste thickness. To make an analytical solution feasible, they made
observations, too, suggests a size efté27]). various simplifying assumptions, the main one being a uniform
The analysis of failure and especially the size effect musgrack depth.
therefore, be based on fracture mechanics. Many investigatorsthe aforementioned simplifications were avoided in a numeri-
have been applying to sea ice fracture problems the linear elaglig simulation of penetration fracture 88,39, which confirmed
fracture mechanice.EFM) in which the fracture process zone alhat indeed the cracks reach only through a part of the thickness
the crack tip is assumed to be infinitely small. However, as tragng propagate at the maximum load stage mainly vertically, al-
- though the crack depth is not uniform. This numerical simulation
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF indicated that for larger ice thicknesses there is a strong size ef-
MECHANICAL EN)(IBINEERpSpfor publication in the ASME QURNAL OF APPLIED ME- fect, approaching the size effect of geometrically similar failures
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 79overned by LEFM, for which the nominal strength is propor-
2000; final revision, July 19, 2001. Associate Editor: A. Needleman. Discussion ¢jpnal to (ice thickness‘)l/z_ This conclusion represents a sharp

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departi ; ; ; i i~
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, a;%ﬁtraSt with the classical solutions based on plasticity or elastic

will be accepted until four months after final publication of the paper itself in th&Y with a Stren_gth limit. Such solutions inevitably imply the ab-
ASME JOURNAL OF APPLIED MECHANICS. sence of any size effect.
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(a) star patterr(shown in a plan view in Fig. (t) for the case of six
¥ cracks. As transpired from a simplified analytical study of Demp-

- .- —— = = - = = = =i sey et al[37] and from a detailed numerical simulati¢i38,39),
these radial cracks do not reach through the full ice thickness
before the maximum load is reached. Rather, they penetrate at
maximum load to an average depth of abouthGa®id maximum
depth 0.85 whereh is the ice thicknes§Fig. 2a). The maximum
load is reached when polygon@ircumferential cracks, needed
to complete a failure mechanism, begin to fofdashed lines in
Fig. 1(c)).

The nominal strength, which is a parameter of the maximum
vertical loadP, is defined for the vertical penetration problem as

on=P/h?, 1)

In plasticity or any theory in which the material failure criterion is
defined in terms of stresses and strains, the nominal stréofyéh
nonrandom materigis size independent for geometrically similar
structures. The size effect in fracture and damage mechanics arises
from the fact that the criterion of material failu¢erack growth is
expressed in terms of energyr stress-displacement relatjon

Sea ice, unlike glacier ice, is not sufficiently confined to behave
plastically (this is for example confirmed by the absence of yield
Fig. 1 Floating ice plate, its deflection under concentrated plateau from the measured load-deflection diagrams seen, e.g., in
load and crack pattern [8]. Sea ice is a brittle material, and so the failure must be ana-
lyzed by fracture mechanidg.g.,[20-22,35,36,38—41,48 The
analysis must be based on the rate of energy dissipation at the

Analysis of another ice fracture problem, namely the large-scfgack front and the rate of energy release from the ice-water sys-
thermal bending fracture of floating i¢g40,41), also indicated a €mM. The energy release is associated with unloading, during
strong size effect, obeying, however, a different law. In this cas¢hich the ice deforms elastically, with a certain Young's modulus
the critical temperature difference is not proportional t& (Which depends on temperature and other fagtors
(ice thickness) 2, as in LEFM, but to (ice thickness§®. The Th(_a behavior of_ the ice plate may be described by the plate
reason is that, at large scale, the cracks must propagate horiZf2ding theory. Dimensional analysis, or transformation of the
tally as bending cracks, rather than vertically across the thickneR&rtial differential equation of a plate on Winkler foundation to
A size effect following still another law was recently demondimensionless coordinates, shows that the behavior of the plate is
strated for the fracture of ice subject to a line lag42]). fully characterized by the characteristic length

As typical for all quasi-brittle materials, the size effect is very L=(D/p)Y4 2
difficult to analyze for the normal sizes of interest, but becomes
much simpler asymptotically for very large sizes as well as veiyhereD=Eh*12(1—»?)=cylindrical stiffness of the ice plate;
small sizes([14,15,43). The philosophy ofisymptotic matching »= Poisson ratio of ice.

([44]) can then be employed to “interpolate” between the oppo- o

site asymptotic size effects. This furnishes an approximate soi- Energy Release and Equilibrium of Fractured Ice
tion for the size effect in the difficult intermediate range. Thi®late

approach, pioneered and widely used in fluid mechatécg., Superposing the expressions for the stress intensity f&gtof

[45-47), has been successfully employed in many studies of cop- ) ; . : )
crete and a more recently in studies of fiber composites and ro{d%'\}a part-through radial bending crack of deptitig. 3,d) pro

ced by bending momer¥l and normal forceN (per unit

([14,19).
Static behavior until failure will be assumed in all of the preser%?ngth’ one has
analysis. Situations in which the ice might acquire significant ki- \/E 6M
netic energy during a temporarily unstable fracture fracture propa- K=" 15 Fu(a)+NFy(a) (3)
gation will not be considered. The creep of ice will not be explic-
itly considered and the elastic modulus of ice will be assumed where
represent the effective modulus that approximately incorporates > 1
the effect of creep for the prevalent loading rate. Fu(a)= 1 /—tanﬂ(cosﬂ)
The purpose of the present two-part study, based on a recent Ta 2 2
workshop article([43]), is to employ the asymptotic matching 4
approach to deduce simple approximate formulas for the nominal %|0.923¢ 0_19% 1—sin2) } (4)
strength of the ice plate as a function of the size as well as geom- 2
etry. Such an approach helps intuitive understanding, clarifies the .
failure mechanism, facilitates optimization of engineering design, Fr(a)= /itanﬂ(cosﬂ)
elucidates the role of energy release as the main source of size N Ta 2 2
effect, and readily reveals how the material and geometry param- 3
eters control the size effect. Part | will deal with the vertical load, T
and Part Il which follows with the horizontal load. x| 0752+ 2'02a+0'37( 1=sin 2 ) ®)

. ([15,49,5Q) with an error less than 0.5 percent over the entire

2 Problem Formulation rangea € (0,1). According to Irwin’s relation, the energy release
An ice plate floating on water behaves exactly as a plate oate is

Winkler elastic foundatioriFig. 1(a,b)), with a foundation modu-

lus equal to the specific weight of water,Failure under a vertical

load is known to involve formation of radial bending cracks in a

B K,Z_ N2
9=z =gp9a (6)
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Fig. 2 Analysis of vertical penetration fracture: (a) crack profile and (b-h)
forces acting on element 123401 in Fig. 1

whereE'=E/(1—v?) andg is a dimensionless function, characteristic length., r,, must be proportional th. Integration
6o 5 over the area of a semi-circle of radiug yields the resultant of
_ bt _ water pressure acting on the whole element 12341. Again, the
9(a)=ma h Fu(a)+Fn(a) (a=alh). ) distance of this resultant, whose magnitudéi2, from load P
e=—M/N=eccentricity of the normal force resultant in the crosgnUSt be proportional t, i.e., may be written as
section(positive whenN is above the midplane Ry= sl (8)

To relateM and N to vertical loadP, let us consider element
12341 of the platéFigs. 1c) and Ze,f,9), limited by a pair of where u,, is a constant that can be solved from the differential
opposite radial cracks and the initiating polygonal cracks. Thegjuation of plate deflections. Of courge, is a constant only as
depth to the polygonal cracks at maximum load is zero, as thing as the behavior is elastic, which is exactly true only if the
just initiate, and since the cracks must form at the location of tleeack deptha is constant. Although the crack is growing, we will
maximum radial bending moment, the vertical shear force on tlagsume that its rate of growth is small enough so thatvould be
planes of these cracks is zero. The distaRcef the polygonal approximately constant.
cracks from the vertical loa® may be expected to be propor- For the sake of simplicity, we assume the normal faxcand
tional to the characteristic length since this is the only length bending momentM on the planes of the radial cracks and the
constant in the differential equation governing the problem, and polygonal cracks to be uniform. The condition of equilibrium of
we may seR= ugrL where dimensionlesag is assumed to be a horizontal forces acting on element 12341 in the direction normal
constant. to the radial cracks is then simple; it requires the normal forces on
In each narrow radial sector, the resultant of the water presstine planes of the polygonal cracks to be equal to the normal force
due to deflectionw (Fig. 2(b,0)) is located at a certain distancg N acting in the radial crack planes. The axial vectors of the mo-
from loadP. Sincer,, can be solved from the differential equationmentsM, acting on the polygonal sides are shown in Fite,9
for w, and since the solution depends only on one parameter, tiedouble arrows. Summing the projections of these axial vectors
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from all the polygonal sides of the element, one finds that theian be approximately determined as the plastic bending moment
moment resultant with axis in the direction 14 iR, regard- M. If f;/f;, with f;=compression strength of ice, is about 1,
less of the numben of radial cracks. So, upon settiig=purL, then the plastic stress distribution is symmetric bi-rectangular and
the condition of equilibrium of the radial cracks with the momentmp/Me: 1.5, whereM .= elastically calculated bending moment
about axis 14Fig. 2(b,c,e,qg) located at midthickness of the crossfor which o= f//f; at ice surface. If./f! were very large, then

section may be written as the stress distribution would be a single rectangle balanced by a
1 concentrated compression force at ice surface, and in that case
2(ugl)M +2(ugl)M— > P(unL)=0. (9) My/M, would be equal to 3. The real value must lie in between,
but probably closer to 1.5. We will safely assume thWgf/M,
Furthermore, we must take into account conditinof verti- =1.5. So we should seek a formula fgth) that gives this ratio
cal propagation of the radial bending cracks, which may be writer h=D, and has a large-size asymptotic expansion of the form
ten asG=G; whereG; is the fracture energy of ice. Thus, thel—D,(1/h)+(-)(1/h)?+ ... . There are many such formulas

critical value of normal forcécompressive, with eccentricitg)  but the simplest one is

may be written as 14+Dy/h

E G h ah)= ———5=—-- 12)
N=— ifh (10) 1+2Db/h
9(a)

This is verified by the asymptotic expansion:
Depending on the energy release rgfe) of the actual crack

2
of lengthay= a¢D (excluding the cohesive zophehere are two M ( %)( — % 4Dp

; )= A=A ; = + Tz
kinds of deterministic size effecta) the size effect due to energy 1+2Dp/h h h h
release of a large crack, characterized by a large valug @), D
and (b) the size effect at crack initiationa,=0), characterized —1-—24 S + Q+ o (13)
by d(ag)=0. They are governed by different laws h h* h
([14,15,30,32,51, and both must be expected to occur in ice ) ) ) )
penetration. 5 Size Effect on Nominal Vertical Penetration
Strength
4 Size Effect on Flexural Strength at Initiation of Po- Aside from the stress redistribution at initiation of polygonal
lygonal Cracks cracks([52]), there is another deterministic source of size effect—

. ) s . the energy release due to vertical propagation of the radial bend-
Consider first the initiation of the polygonal cracks. Sinegg ing cracks([28]). The bending moment
=0 andg(ap) =0, the initiation criterion is that the normal stress

o reaches the tensile strendthof the ice. However, the crack can M=—Ne=—Nguch (14)

begin to propagate only after a boundary layer of distributed Miay pe substituted int); here the normal forcdl is defined to
crocracking, representing the fracture process zone, forms at H?ﬂ.epositive when tensile, although the actual valudldé nega-
top surface of icé[14,15,30,51,58. The half-depth of this layer, tjye (compressio) and u.=e/h=dimensionless parameter
denoted ady,, is a material constar(wh.ich should be roughly \yhose value at maximum load may be assumed to be approxi-
equal to the fracture process zone lenggtintroduced later Note  mately constant. This assumption is indicated by the numerical
that the boundary layeD,, has been shown to explain the experisimylations in[38,39, from which it further transpires thate
mentally observed size effect on the modulus of rupture in theg 45, as a consequence of the fact that the average crack depth
bending tests of concretgl5,52). a at maximum load is about (hg(in any caseu,<0.5, and so a
Although the crack initiation can be handled by the energysssible error inue cannot have a large effécfThe value 0.45
release function, it is simpler to consider the stress redis”ibUti%fbproximately corresponds to the correct number of cracks in the
in the cross section caused by softening in the boundary laygg, pattern; if there were more cracks, the depth would be
([52]). The easiest way to obtain a nominal strength formula th§FnaIIer, if fewer, larger.
is correct up to the first two terms of the expansion in terms of afer substituting(14), we may expres# . from (9) and sub-

powers of 1 is to write the condition that the elastically calcu-gjtyte it into(11). Then, taking into accourti.0), we obtain after
lated normal strese, should be equal to the tensile strength ofaarrangements the equation:

ice, f; , at the middle of the boundary layer of thicknesd 2

rather than at ice surface. So the crack initiation criterion is _ 2R (6 Lt [E'Gy  f (15)
o+ N/h=f{ where, according to the bending stress formula, IN 3w fe q(h) hg(a) q(h)
go=M(h/2—Dy/2)/(h%12). This yields the crack initiation cri-

whereq(h) is given by(12).

terion: Now we need to decide how the valuesmft maximum load
6M, N should vary with ice thicknesk. To this end, note that ice is a
Vq(h)Jr N =f, (11) quasibrittle material. This is evidenced by the fact that at small

laboratory scale it is notch-insensitive and exhibits no size effect

whereq(h)=1—-D,/h. This form of the criterion, however, be- while at large scale it behaves according to LERN0,24).
comes meaningless whdn<2D,,, i.e., when the ice is thinner Therefore, at the tip of the vertically propagating radial crack,
than the cracking layer thickness. It can be correct only whisn there must exist a finite fracture process z6RB2) of a certain
sufficiently larger than B, i.e., asymptotically foh/Dy,—o. characteristic depth@ which is a material property. This zone
So it is desirable to modify functiog(h) so as to obtain a for- was modeled in the numerical simulations of ‘Baz and Kim
mula approximately applicable through the entire size range. TH&8,39 as a yielding zone. The tip of the equivalent LEFM crack
can be achieved by considering a rangerQfformulas that have lies approximately in the middle of the FPZ, i.e., at a distatce
the same first two terms of the large-size asymptotic expansionfiom the actual crack tif 15]), whose location is denoted ag.
1/h as(11), and then choosing that which gives the correct value If the locations of the center of the FPZ in structures of differ-
of the small-size nominal strength. Such a kind of approach ént sizes were geometrically similar, i.e.,dfat maximum load
known as asymptotic matching. were the same for ali, then the size effect would be the same as

Whenh=2D,,, i.e., when the distributed cracking zone encomin LEFM. Experience with testing of quasi-brittle materigl$5]),
passes essentially the whole depth of plate, the moment at failaewell as with cohesive crack and nonlocal damage simulations,
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shows the locations of the center of FPZ are usually not geometri- 1R

cally similar. Rather, similar locations are those of the actual crack 0N=—(fé*l+ ft’*l)’l (21)

tip. Thus the value ofry=ay/h may be expected to be approxi- Hw

mately constant when ice plates of different thicknedsemre which exhibits no size effect. Plasticity, however, requires that the
compared. Denotingy’ (ao)=dg(ag)/dagy, one may introduce material strength at all the points of the failure surface be mobi-
the approximation lized at the same time, which is impossible for a quasi-brittle

, (softening material such as sea ice.
9(a)~9g(ao)+g'(ao)(ci/D). (16)

Substituting this inta15) and rearranging, one gets for the siz& Closing of Part |
effect the formula The simplified asymptotic analysis of size effect in vertical pen-

7 ’ etration of the ice plate confirms the inevitability of a strong size
4/LR 1 E Gf MR ft . . . .
oN=—| et h h y + 3 o effect for larger ice thicknesses, approaching the size effect of
Hw 6a(h) 9(ao) +¢1g" (@) 3uw Al )(17) LEFM. This conclusion does not disagree with experiments and is

supported by previous numerical studies summarized in the Ap-
The results of numerical simulations [i89] were found to be pendix. Part Il which follows will apply a similar approach to the

quite well represented by the simple classical size effect law wititoblem of an ice plate moving against a fixed structure. It will be
large-size residual strength proposed if53] which reads seen that size effects must again be expected, but their nature is
_12 rather different.
h

oN= 0'0( 1+ —) +o,. (18)

ho

Formula(17) is now seen to reduce to this law wheth)~1, i.e.,
whenDy, is negligible, in which case then

Appendix

Review of Previous Numerical Fracture Analysis of Size Ef-
fect. To supplement the analytical approach, it may be useful to

Bpuppie E'G, 9’ (@) e . review recent detalleq numerical simulation of fracture of floating
0o= - , 0=Ci———, o= fi. ice caused by a vertical loai38,39). The fracture patterifor
Hw ¢t9'(ao) 9(ao) 3w the case of six radial crackss shown in Fig. 8a). The radial

(19)  cracks at maximum load penetrate through only a part of ice
Furthermore, the numerical simulations[i9] indicated thato,  thickness([26,55); Fig. 3(b,c). The radius of each crack is di-
~0. This means that the contribution of the tensile strerfgth vided by nodes into vertical strips in each of which the vertical
governing the initiation of the polygonal cracks must be neglFrack growth obeys Rice and LevyS7] “nonlinear line-spring”
gible, which in turn implies a negligible role fay(h). model relating the normal fordd and bending momern¥! in the

The terms in(17) containingD,, anyway decrease with increas-cracked cross section to the relative displacemteand rotation¢
ing h much more rapidly thafl8)—they decrease with increasing(Fig. 3(b)).

h as 1h, compared to 1/i. Consequently, they must become The analysis is based on a simplified version of the cohesive
neg||g|b|e for not too |argé‘| regarc”ess of the value (ﬁjb i crack model in which the vertical crack grOWth in each vertical

Same ag18), formula (17) plotted as logry versus logh ap- Strip is initiated according to a strength criterion. The cross section
proaches for |argd‘] a downward inclined asymptote of s|opebehaVi0r is considered elastic-plastic until the yleld envelope in
—1/2 (Fig. 3(g)). This characterizes the large-size asymptote dfie (N, M) plane is crossed by the poi(i, M) corresponding to
the size effect law ir(17). fracture mechanics. For ease of calculations, a nonassociated plas-

How does the numbar of the radial cracks enter the solution?tic flow rule corresponding to the vectod4,d¢) based on frac-

It does not appear in the present solution for the maximum lodgire mechanics is assumed.
The reason is that the number of cracks is decided at the beginThe following ice characteristics have been used in calcula-
ning of loading, long before the maximum load is attained. tions: tensile strengthf/=0.2MPa, fracture toughnes¥,

It is interesting to contrast the size effect obtained here with that0.1 MPa/m, Poisson ratiov=0.29, and Young’ modulu€
deduced for large-scale thermal bending fracture of floating ice,1.0 GPa, with the corresponding values: fracture eneegy
which was shown to b§40]) =K§/ E=10J/nf, and Irwin's fracture characteristic lengh

ATxh 38 (20) =(K./f{)?=0.25 m(this value happens to be about the same as

for concrete.

whereAT is the temperature difference between the bottom andrigure 3e) displays, with a strongly exaggerated vertical scale,
top of the ice plate, which is proportional to the maximum thermahe calculated crack profiles at subsequent loading stages. Fig.
stress before fracture. The large-size asymptotic size effect #f) shows the numerically calculated plot of the radial crack
fracture under vertical loads would have to follow also th8/8 |engtha versus the ice thickneds (“fracture length” means the
power law if the cracks at maximum load penetrated through thgdial length of open crack, and “plastic length” the radial length
full thickness of ice and forc&l were negligible([35,40,42,59.  up to the tip of plastic zoneThis plot reveals that, except for very
But this turned out not to be the ca§&7-39,55,59. thin ice, the radial crack lengta~c,h where c,~24 for the
typical ice properties assumed.

The data points in Fig. (8) show, in logarithmic scales, the
. numerically obtained size effect plot of the normalized nominal
6 Comments on Plasticity Approach strengthoy=P/h? versus the relative thickness of the igete

In contrast to the brute-force numerical simulations conductefat according to plasticity or elasticity with strength criterion, this
before, the approximate analytical derivation of size effect is irblot would be a horizontal line The initial horizontal portion, for
tuitively instructive. It clarifies the reasons why there must be which there is no size effect, corresponds to ice thinner than about
deterministic size effect in penetration of floating ice. The sizgg cm.
effect could be absent only if the material behaved plastically.  Since the model if38,39 includes plasticity, it can reproduce

If the sea ice were a plastic material, the stress distributions g classical solutions with no size effect, depending on the input
element 12341 would be as shown in Figh)2 wheref; andf. values of ice characteristics. The ice thickness at the onset of size
denote the tensile and compressive yield strengths. Taking #fect depends on the ratio of ice thickness to the fracture charac-
moment equilibrium condition of this element, one can easilteristic length,h/l,. For realistic ice thicknessdsranging from
show that the nominal strength would in that case be expressedasm to 6 m, the computer program would yield perfectly plastic
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Fig. 3 Vertical penetration fracture problem analyzed by Baz  “ant and Kim [38,39] main numerical results,
and comparison with field tests of Frankenstein [59,60] and Lichtenberger [61]

response with no size effect if the fracture characteristic lehgthin Bazant[58]. The final asymptote has slopel/2, which means
were at least 108 larger, i.e., at least 25 m. This would, forthat the asymptotic size effectigych~*2 the same as for LEFM
instance, happen if eithef, were at least 18 smaller (f;  with similar cracks, and noh~® as proposed by Slepyan
<0.01 MPa oK, at least 1& larger (K.=10 MPa/m). The en- [35,40,54. The —3/8 power scaling would have to be true if the
tire diagram in Fig. 8) would then be horizontal. radial cracks at maximum load were full-through bending cracks.
Larger values of, are of course possible in view of statisticalThe —1/2 power scaling may be explained by the fact that during
scatter, but nothing like 100 larger. For example, by fitting size failure the bending cracks are not full-through and propagate
effect data([23,24]) from in situ tests at Resolute, one gé&ts mainly vertically, which is supported by the calculated crack pro-
~2.1MPa/m, and withf{ ~2 MPa one has the fracture characfiles in Fig. 3e). o _
teristic lengthl = (K. /f/)2=1 m. But this larger value would not  BY fitting of the data points in Fig.(8), spanning over four
make much difference in the size effect plot in Figg)3 The orders o_f magnitude of ice thlckne_hs the_followmg prediction
reason that these values were not used in the plot in Figvgas formula in the form of the generalized size effect l&g5,41)
that they correspond to long-distance horizontal propagation S been calibrateee the curve in Fig.(8)):
fracture, rather than vertical growth of fracture.
The curve in Fig. &) is the optimum fit of the numerically ) . .
calculated data points by the generalized size effect law proposed Pmax=onh®  on=Bf[1+(h/\glo)'] (22)
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with B=1.214,\y=2.55, m=1/2, r=1.55, andl,=0.25m (ft, bDriiSJSEUSr?i?ogf g:)eclz_zr%?)stlz;r(l)d_lsgrgallest Member of a Sample,” Proc. Cam-

=0.2MPa in Fig. 19)). , _ [13]Kittl, P, and Diaz, G., 1988, “Weibull's Fracture Statistics, or Probabilistic
Only very limited field test data exist. The data points in the  swength of Materials: State of the Art,” Res. MecB4, pp. 99—207.

size effect plots in Fig. (h) represent the results of the field tests[14] Baznt, Z. P, and Chen, E.-P.,, 1997, “Scaling of Structural Failure,” Appl.
by [59_6]]’ and the curves show the optimum fits with the SiZe[15] g;;amtRZevﬁsoérﬁlg.PllgﬁggJsgslgggzi;:ture and Size Effect in Concrete and
e_ffect formula verified by numerical calculatlo_mote that if the Other buasit’;rime MaterialsCRC Press, Boca Raton, FL.
size effect were absent, these plots of nominal strength woulds| Baznt, z. P., and Xi, Y., 1991, “Statistical Size Effect in Quasi-Brittle Struc-
have to be horizontal After optimizing the size effect law param- tures: 1. Nonlocal Theory,” J. Eng. MechL17, No. 11, pp. 2623-2640.
eters by fitting the data in the three plots in Figh)3the data and [17] Baznt, Z. P., and Nola D., 2000, *Probabilistic Nonlocal Theory for Qua-
the optimum fit are combined in the dimensionless p|0t in Fig sibrittle Fracture Initiation and Size Effect. I. Theory,” J. Eng. Med26, No.
; * 2, pp. 166-174.
3(')- ) . . . [18] Weeks, W. F., and Mellor, M., 1984, “Mechanical Properties of Ice in the
Interesting discussions ¢f38,39)) were published by Dempsey Arctic Seas,” Arctic Technology & Policyl. Dyer and C. Chryssostomidis,
[62] and Sodh{63] and rebutted. One objection raised by Sodhi  eds., Hemisphere, Washington, D.C., pp. 235-259.

was the neglect of creep in Eﬂﬂt and Kim's analysis Intuition [19] Weeks, W. F., and Assur, A., 1972, “Fracture of Lake and Sea Ice,” Fracture,
. . . . . H. Liebowitz, ed. Il , pp. 879-978.
suggests that the influence of creep might be like that of plastiCitysq) pempsey, J. P., 1991, “The Fracture Toughness of ltee"Structure Interac-

which tends to increase the process zone size, thereby making the tion, S. J. Jones, R. F. McKenna, J. Tilotson, and 1. J. Jordaan, eds., Springer-

response less brittle and the size effect weaker. But the opposite is Verlag, Berlin, pp. 109-145.
true ([15]) [21] DeFranco, S. J., and Dempsey, J. P., 1994, “Crack Propagation and Fracture

The infl f l f brittle fail £ t Resistance in Saline Ice,” J. Glacio#ip, pp. 451-462.
€ Intluence or creep on scaling or brittie Taliures ot concre egzz] DeFranco, S. J., Wei, Y., and Dempsey, J. P., 1991, “Notch Acuity Effects on

which is doubtless quite similar from the mechanics viewpoint = Fracture of Saline Ice,” Ann. Glaciol15, pp. 230—235.
(albeit different in physical origin was studied in depth at North- [23] Dempsey, J. P., DeFranco, S. J., Adamson, R. M., and Mulmule, S. V., 1999,
western University, along with the effect of the crack propagation “Scale Effects on the in situ Tensile Strength and Fracture of Ice: Part I: Large
velocity; see, e.ng5,34,64 and especiall)[65,6(ﬂ. The conclu- Sg.aggsd_lgfshwater Ice at Spray Lakes Reservoir, Alberta,” Int. J. FEgt.,
sion from these studies, ba_Cked by eXter_]3|Ve fracture_ testing iy Dempsey, J. P., Adamson, R. M., and Mulmule, S. V., 1999, “Scale Effects on
concrete and rock at very different rates, is that creep in the ma- the in situ Tensile Strength and Fracture of Ice: Part II: First-Year Sea Ice at
terial always makes the size effect due to cracks stroigdess (25 'l\?/lelsolulte, 2‘ y E Int. J. FfJaCL%u Pg- 235—378- R ML 1095 “Large.Seal
A . h R uimule, 5. V., Dempsey, J. P., an amson, . o y arge-scale
creep aCtua”y pre_vents crack |n|t|atDor1n the Ioga_rlthmlc size in-situ Ice Fracture Experiments—Part II: Modeling Effortécé Mechanics—
effect plot of nominal strength versus structure size, it causes a 1995,vol. AMD-MD-1995, ASME, New York.

shift to the right, toward the LEFM asymptote, which means tha26] Dempsey, J. P., Adamson, R. M., and Mulmule, S. V., 1995, “Large-Scale

the size effect is intensified by creep. The slower the loadimg s Fracture of Ice, Proceedings of FRAMCOSE. H. Witmann, ed.,
. . - . . ublishers, Freiburg, Germany.
the Ionger its duratloh the closer to LEFM is the size effect in a [27] Li, Z., and Baant, Z. P., 1998, “Acoustic Emissions in Fracturing Sea Ice
cracked structure. - _ _ Plate Simulated by Particle System,”J. Eng. Med24 No. 1, pp. 69-79.
The physical reason, clarified by numerical solutions of stres®8] Bazant, z. P., 1984, “Size Effect in Blunt Fracture: Concrete, Rock, and
profiles with a rate-dependent cohesive crack mdd]), is that Metal,” J. Eng. Mech. 110, pp. 518-535.

the highest stresses in the fracture process zone get relaxed By ?féapfo Zg' %bliggé_sl%ﬂfg Laws in Mechanics of Failure,” J. Eng. Mech.,

creep, which tends to reduce the effective length of the fra(_:tu@o] Bazant, Z. P., 1997, “Scaling of Quasibrittle Fracture: Asymptotic Analysis,”

process zone. The shorter the process zone, the higher is the Int. J. Fract.83, No. 1, pp. 19-40.

brittleness of response and the stronger is the size effect. THi&ll Bazant, Z. P., 1997, “Scaling of Quasibrittle Fracture: Hypotheses of Invasive

explains why experiments on notched concrete specimens consis- ang": C;“SE, Fﬁité“;y' Their Critique and Weibull Connection,” Int. J. Fract.

tently show the size effect tO. be more pronounced at a slowes) Baznt, z. P., 1999, “Size Effect on Structural Strength: A Review,” Arch. of

loading ([15]). A similar behavior might be expected for ice. It Applied Mechanics9, pp. 703-725.

thus transpires that, in order to take the influence of creep on tha3l Eaﬁmm Z-t P, |an3v It(r:m,& J-l-_K-1t_198t5- ‘I‘Fffi"gure TAhSengy ,Lort Ngnh?mog(e:nefus
H B : : . rittle Materials | pplication to Ice, Proc. at. cont. on Civi

size effect apprOX|mater into account, it suffices to reduce the Engineering in the Arctic Offshore—ARCTIC,85 F. Bennett ed., San Fran-

value of fracture energyor fracture toughne$sand decrease the cisco, CA, ASCE, Reston, VA, pp. 917-930.

effective length of the fracture process zone. [34] Bazant, Z. P., and Gettu, R., 1991, “Size Effects in the Fracture of Quasi-
Brittle Materials,” Cold Regions Engineering, (Proc., 6th ASCE International
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Scaling of Sea Ice Fracture—Part
z.p.eazant | 1l HOrizontal Load From Moving
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Northwestern University,

Evanston, IL 60208
e-mail: -bazant@northwestern.edu Continuing the analysis of fracture size effect in Part |, which was focused on the maxi-

Fellow ASME mum force in vertical penetration of ice, Part Il tackles the problem maximum force that
can be applied by a moving ice plate on an obstacle presented by a fixed structure. Based
on an asymptotic approach, approximate solutions for are obtained for the size effects of
ice thickness, effective structure diameter and, in the case of a finite ice floe, the size of the
floe. [DOI: 10.1115/1.1429933

1 Introduction =E/(1—17); and P, is the critical force exerted by the resisting
ucture on the moving ice plat€ig. 1(a)). There are, however,

ly two independent physical dimensions in the problem, namely
e length and the force. Therefore, according to Buckingh&in’s

After analyzing in Part | the vertical penetration problem, wélr
will examine in the present Part Il another fundamental proble
of large-scale fracture of sea ice—the maximum fdpcthat can ; . X
be exerted by a moving ice plate of thicknds®n an obstacle theorem_ of c_ilmen5|0nal anal_ys(@—ll]), the_ solution must be
presented by a fixed structure of effective diametémagined as expressible in terms of 5,2’ e, 3 dlrmensmnless parameters.
a cylindey. Similar simplifications will be made and the approac ey may be taken &, /E'hd, \pD/E'h andd/h. Because the
of asymptotic matching will again be followed. All the definitionbuckling is linearly elasticP.,/E"hd must be proportional to
and notations from Part | will be retained. Several possiblépE’/E’h andd/h. Denoting
mechanisms of breakup will be considered.

Stress analysis and fracture of floating ice plates subjected to a on,,=Pe/hd 2
horizontal load has been studied by Ashton, Atkins, Goldstein and ] )

Osipenko, Lavrov, Palmer et al., Ponter and Slepyan, and oth#fdich represents the nominal buckling strengtin the average
([1-7)). These investigators used dimensional analysis to detétitical stress applied by the face of the resisting structures on the
mine the scaling laws of linear elastic fracture mechafli& M) moving ice platg and noting thatD =E’h%/12 with E' =E/(1

and of strength theory. They did not consider cohesive fracturer?), we conclude that the buckling solution must have the form
and did not attempt to bridge these two theories to describe the

size effect transition from one to the other. Characterizing this O'NchK(d/h)\/pE'\/ﬁ 3)
transition is the main objective of what follows.

For the horizontal load, it is convenient to define the nominavhere x is a dimensionless parameter depending on the relative
strength as the average stress on the cross-sectiohdigfathe diameter of the structurel/h, as well as on the boundary condi-

structure facing the moving ice plate, i.e., tions. Ford/h— (i.e., an infinite wall, this must reduc¢8] to
the critical stress for an infinite beam on elastic foundation loaded
on=P/hd. (1) atthe free endvertically sliding end. Therefore x(0)/\y12=1 or
. . x(0)=2v3, which represents the smallest possible value &dr
2 Global Failure due to Buckling of Ice Plate anyd/h. This fact becomes obvious by imagining a strip of width

Cylindrical buckling, in which the deflection surface is a transd in the direction of movement to be separated from the rest of the
lationary surface, can occur only if the ice plate is moving againie plate; for that stripc,= 1 (if the ice in contact with the struc-
a very long wall l—). In this case the plate behaves as a beattire is free to slide vertically, Fig.(&)), and re-attaching the rest
on elastic foundation, which is a one-dimensional problem, a®d the plate cannot but increase the critical load.
the critical compressive normal force per unit width of the plate is An interesting property of3) is that, for geometrically by simi-
known to be(e.g.,[8]) N, = xo+/pD where coefficienk, depends lar structuregconstand/h), oy, increases, rather than decreases,
on the boundary conditions. Its minimum value occurs for a semwith ice thicknessh. So there is aeversesize effect. Conse-
infinite plate with a straight infinite free edge and«ig=1. quently, the buckling of the ice plate can be the mechanism of
If the obstacle, such as the legs of an oil drilling platform, haiilure only when the plate is sufficiently thin. The reason for the
a finite dimensiord in the transverse direction, the buckling modeeverse size effect is that the buckling wavelen@tie distance
is two-dimensional and more complicated. In any case, howevbgtween the inflexion points of the deflection profilevhich is
dimensional analysi§9,10]) suffices to determine the form of theL.,=w(D/p)** (as follows from dimensional analysis, or from
buckling formula and the scalin@3,7]). nondimensionalization of the differential equation of plate buck-
There are five variables in the proble®,,, E’, p, h, d, and ling), is not proportional td, rather
the solution must have the forf(P., ,E’,p,h,d)=0, whereE’ B
Lo /hoch ™4, @)
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF I.'e" LC’ decreases with. This contrasts with the st_ructural b.UCk-
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF AppLIEDME-  1ING Problems of columns, frames, and plates, in which is
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 7jproportional to the structure sizé€Despite the analogy between
t2h°00? final L%Vif,§°€é ;g'é’rggsveiog’lt-héség_cti(?rtepggfsiofi-L';‘e?ﬁ'%ef\f}?ﬁée?scg?igg eixisymmetric buckling of an axially compressed cylindrical shell
ofel\/FI):EI?;ricaluEngineering, University olf Hbuston, Houstv(\)lh, 'I;X 77204-'479’2), a;%erw a floating Ice'. no size effec_t occurs for the shell because,
will be accepted until four months after final publication of the paper itself in th&lNlike p,,, the equivalent foundation modulus of the shell scales
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@ dC(a) 4 8
a B
da wEha’ ®)
PAMNN ih P This expression may now be integrated fram d/2 (the surface
- ——— = = — — 1t of the structure, considered as circular, Figh,#)) to a (note that
— — - —_ - - - integration froma=0 would give infiniteC but would be mean-
o™ T 1 _ —— _— —

ingless becausacannot be less that). In this manner, we obtain
C(a), and from it the opening deflectio:

4F

5=C(a)F= mm

2a

. ©

ing, we would haves=d. However, as will be discussed later,

between the two flanks of the crack is no doubt less thawe
denote it asyd wherey is a coefficient less than 1. Upon setting

5=xd, (9) yields
d wEhyd
a=sex . (20)

2 4F

(note thata/d is not constant but increases with hence, the

power scaling cannot be expected to app8ubstituting(10) into
(5) and settingK,=K.=EG; (Irwin’'s relation, K = fracture
toughness of ice we obtain

2F p{wEth)
=eX]
hy7EGd 8F

The pair of forcesF is related to loadP on the structurdP
=2T, Fig. Xc)) by a friction law, which may be written as

(11)

Fig. 1 (&) Buckling of ice plate pushing horizontally against a P=2F tane. (12)
fixed structure, - (b,c,d) radial cleavage crack, and  (e-g) diverg- \\here o is the friction angle. Substituting = P/2 tane and P

ing V-cracks =ogyhd into (11), we obtain, after rearrangements,
d 1 ON
— 17 — -
dC 72 e, T e (13)

3 Global Failure due to Radial Cleavage Fracture
g in which 7 is the dimensionless nominal strength, ahdand o

Another failure mechanism consists of a long radial cleavagge constants defined as
crack in the ice plate, propagating against the direction of ice
movement(Fig. 1(b,0). The resistance of the plate against being _ AGy
cleaved causes the ice to exert on the structure a pair of transverse ¢ mx’E’
force resultant§ and a pair of tangential forc&sin the direction . N .
of movementT = F tane whereo may be regarded as the friction  Eguation(13), plotted in Fig. 2, represents the law of radial
angle. Forced have no effect on the stress intensity fadtgrat  cléa@vage size effect in an inverted form. The small-size

T
O'CZEXE tane. (14)

the crack tip. asymptotic behavior is the LEFM scaling for similar structures
First we will consider the asymptotic casbaa structure of a With similar cracks:
very large sized producing a crack of a very long lengéh(Fig. for d<d.: oy~d/d. (15)

1(b,0)). LEFM must apply in this asymptotic case. To determane
we need to calculate the crack openifigaused byF. Consider- The plot of (13) in Fig. 2 shows that the size effect is getting
ing the ice plate as infinite, we havygl2,13) progressively weaker with increasing structure diameteial-
though no horizontal asymptote is approached by the guiree

F 2 reason for this is that the crack is dissimilar, i.e., the ratidl, of
K'ZF ma (5)  crack length to structure diameter is not the same for different
sizes but increases according (t0) with the structure size(In

If the radial cleavage fracture were the only mode of ice break-

there is likely to be at least some amount of local crushing at, and
ahead, of the structure. Consequently, the relative displacement

fracture modes are not geometrically similar, and so the LEFM

The energy release rate is designing ocean platforms, it is nevertheless always advanta-
geous, with respect to the radial cleavage mechanism, to use a

JlIT*
Ja

1
“h

_13
. h oa

1
2

_ F?dcC(a)

C(a)F?|= h da (6) itively followed in practicel

whereC(a) is the load-point compliance of forc& Upon using LEFM. In other words, the lengthc? of the cohesive zone at the

(5) and Irwin’s relation([14]), we have at the same time tip of the radial cleavage crack was considered negligible com-
pared toa. Let us now consider the opposite asymptotic case of a
K|2 2F?2 very small structure diameterand a very short crack such that
~E” 7Enta’ (7) a<cy. In that asymptotic case, the crack faces upioa,=a
—d/2 are subjected to uniform cohesive tractidfis Noting that
Equating(6) and(7), we thus get the stress intensity factor for a semi-infinite crack in an infinite
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smaller number of larger legs, which has of course been intu-

So far our radial cleavage crack analysis has been based on



100.0 face of the opened crack is approximately straight, which is a
simplification widely used in materials science. Under that as-
sumption,v ;= kvalay, wherekas=2 if the crack face remains

straight. Then, from(19),

8f;
l)f:ﬁ Kfa. (20)
The opening displacementw? due to the pair of concentrated
forces F has already been calculated in9); 2vg
= (4F/mEh)In(2a/d). Compatibility of transverse displacements
at the center of structurexgéa) requires that

20— 2v¢=y. (22)

Substituting the foregoing expressions fqr andv;, and setting
F=P/2tanp=0o\hd’2 tang, one obtains, after rearrangements,
the equation

10.0 -

wEyx tane

(22)

ON
|n( =Kf+

2f{tang

20'N

o1 T T T T 1T T T T T"1 Thisis a transcendental equation whose solutiqs o3, repre-
1E-4 1E-2 TE+0 (B2 1E+4 1E+6 sents the average pressure applied on the area of the structure
d / dc facing the moving ice. Sincd andh do not appear in this equa-

) ) ) ) ) tion, the o3 value is a constant, represented in Fig. 2 by the
Fig. 2 Size effect associated with radial cleavage fracture horizontal line. So, as expected, there is asymptotically no size
(sohq curve—LEFM solution, dashed curve—cohesive crack effect if d—sos.
solution ) To obtain the approximated law of the size effect for the inter-

mediate sizes, the small-size and large-size asymptotic behaviors
must be suitably matched. Similar to many previous approxima-
) ) _ tions of quasi-brittle size effe¢f13,14)), the asymptotic matching
space caused by a pair of unit concentr_ate_d force acting on W\%y be accomplished by replacing sizén (13) with the expres-
crack faces at distance from the crack tip isK,=(VZ@/X)/h g, (@ +d) 1" whered, is a constant. With this replacement,

([12)), we find thatk, caused by uniform tractionf§ is (13 provides the following general approximate asymptotic
a-d2 [ 3a matching law for the size effect:
K|f:—f \/;f{dx:—f{ \E (16) q
0 (dr+dr0)l/r=T_‘23€1/T. (23)

The stress intensity factor due to concentrated readfian dis-

tance a from the cohesive crack tip is, according ¢6), K, Herer is an empirical constant, probably close to 1. Eor =,
=(F/h)y2ImTa. It is necessary that the total stress intensity factdhis equation asymptotically approaches the LEFM @&g), and
K=K +K; =0. From this condition and the friction relationfor d—0 the following equation for constaxl is obtained:

(12), it follows that do= are( 02 002) €%/ (24)

P=4ahf; tane. a7 Whereaﬂ is the solutionoy of (22). In analogy to other scaling

To calculate the deflectiod; due to cohesive stressés, one Problems, the value=1 is often reasonable, and thezB) sim-
could use Green's function. However, this leads to a complicatédifies to the size effect formula:
integral. Since a high accuracy is not needed, we prefer an ap- d
proximate calculation. To this end, we imagine the cohesive crack d= e —d,. (25)
lengthx to grow from 0 toa,=a—d/2 while constant tractionfy 4
act along the entire crack length in front of the structiamed work Equation(23) for the quasi-brittle size effect due to a horizontal
on the growing openingIn view of (16) and Irwin’s relation, the load is plotted as the dashed curve in Fig. 2. The shape of this plot
total energy released during the imagined growth of this crack écuments the difficulty in deducing the size effect from small-
a0 K2 801 Bx\ 2 457292 scale experiments. If the tests are confined to the nearly horizontal
H*:f ! f (f{ . /_X) dx= —+ 20 intial portion of the dashed curve, there is no way to predict the

—dx= — 1 . . L !
o E dx o E 7E (18) size effect at large sizes unless a realistic theory is employed.

which is a function off; representing the complementary energy.
According to Castigliano’s theorem, differentiation Hf* with

respect to the total cohesive foreghf{ provides the displace-
ment parameter on which the cohesive striisworks, which is  As typically observed in the field, moving ice gets crushed in

the average crack-opening displacemenbver the lengtha, of ~front of an obstacle, breaking up into chunks. The cause is local
application off; ; compression fracture of the material. Its initiation may be ex-

plained by sliding on inclined weak plains between ice crystals,
_ 1 g11* 8flag which leads to axial splitting microcracks called the wing-tip
Vt=2F o = . (19)  cracks(for ice see, e.g., Schuls¢5,16)) extending in the direc-

aoh é’ft 7TEh . . - .. . .

tion of compression for a certain finite length. This mechanism,
Since we avoided Green’s function, we now need to approximatewever, explains only the generation of local compressive dam-
the relationship between; and opening displacement at the age in the material but does not explain to overall failure of the
center of the structurex=a (Fig. 1(c)). We may assume that the plate and the size effect.

4 Compression Fracture of Ice Plate
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(a) ting microcracks in the band, arsd their average spacing. Energy

balance during the quasi-static extension of the band requires that
k /g:}?\ NP the rate of energy release be equal3p, i.e.,
P h\<£r—_|

oIT* 0',%,
= E(wc+atanz//a+2atan¢/b)=Gb. 27)

3 Jda

Solving this equation forry, we get, after rearrangements,

h -1/2

1+ p

ON= 04

(28)

in which the following notations are made:

b w, _ [2EG, 2
073 (tany+2 tangy) ' 0% w, (29)

Here we deliberately introduced the plate thickneswven though
it cancels out of the equation. The reason is that it appears rea-
sonable to assume the ratigh for plates of various thicknesses
(@ to be approximately constant. In other words, the geometries of
the damage band at failure of the plates of various thicknesses are
assumed similar. This assumption is based on experience with
some other fracture problems, for which it was shown to lead to
realistic results. Anyway, it is intuitively clear that it would be
& @ unreasonable to assume that for thin plates the damage band at
maximum oy penetrates through most of the thickness and for
thick plates penetrates only to a very shallow depth.
Equation(28), plotted in Fig. 3c), is the same as the classical
size effect law proposed by Baut[18] for quasi-brittle structures
) ) ) ) o failing after a long stable growth of tensile fracture. Among the
Fig. 3 (a) Compression fracture of ice plate, ~ (b) axial splitting  mechanisms explored here, it is the only one that can explain the
fracture, (c) size _effects corresponding to (&) and (b), and (d)  jze effect of ice thickness.
overall fracture of ice floe The ultimate cause of size effect in compressfas well as
tensile fracture is that the volume of the energy dissipation zone,
i.e., the damage band, grows linearly with the distaanoé propa-
. ation while the volume of the energy release zone grows faster
To produce overall breakup of ice, the damage must propagaigan linearly, having a quadratically growing term that dominates
As transpired in connection with studies of concrete and borehqlg |arge sizes. Thus it is intuitively clear that if the stress in these
breakout in rock([13,17), the propagation typically occurs in the ;one at failure were the same, energy balance could exist only for
form of a narrow band consisting predominantly of axial splittingne size but not for other sizéid4]). So, in a larger structure the
microcracks(generated, e.g., by the wing-tip crack mechanismsyress in the quadratically growing zond231 and 4564 in Fig.
The band of axial splitting microcracks can propagate either in t%)) must be less.
axial direction of the compressive stress, or laterally. The latter ISThere is of course another possibility—namely that the damage
shown in Fig. 3a), and the former in Fig. ®). ) band grows axially, in the direction of compression, which leads
In the spirit o_f fracture mechanlcs_, one must e_stlmat_e the energy 5 splitting failure (Fig. 3(b)). In that case the stress in the
release. Consider the plausible situation depicted in Fg), 3 material on the sides of the crack band is not relieved, and so the
where the band of a certain characteristic wiathin the direction  energy release occurs only within the damage band itself. In that
of compression has inclinatiog, and reaches to deptibelow case ot only the energy dissipation but also the energy release
the surface of plate. Formatllon. of the band must evidently relieyge proportional to the length of the band, which means that
the axial stresgry not only within the band area 12541, but alsQnergy rates for the same failure stresscan balance for any size
in the adjacent zones 1231 and 4564. The boundary of the Stres$o, for the axial propagation, there is no size effect.
relief zone is considered to have a certain characteristic inclina-Tne axial growth is more likely because no new wing-tip cracks
tion ¢, , independent of the plate thickness. The combined area;feq to be nucleated. Therefore, at small enough sizes the axial
the stress relief zone 43264agw. +a/2 tany, +atanyy). Before  gpitting of ice should prevail, which means that the splitting
the formation of the damage band, the initial strain energy densfgyechanism corresponds in the logarithmic size effect (.
in this zone iso}/2E, and after the formation of the band it may3(c)) to a horizontal line starting below the curve of the size effect
be assumed as zefmore generally, one could quite easily takdaw for lateral propagation of the damage band. However, the
into account some finite residual strengthof ice after crushing, horizontal line must eventually cross the size effect curve at a
see[17]; but this is omitted since no information ar is avail- certain critical sizeh,,, above which the lateral propagation of
ablg. Thus the total energy release caused by formation of tigmage band must prevail, and then a size effect must exist.

damage band per unit width is, approximately, The present analysis is similar to that made for concrete; see
5 [17], where various fine details are discussaldo[13,14).
o 1 Finally, an explanation of empirical paramejemtroduced for
M*=-~a w.+ zatang,+atanyy|. (26) nay iy I pirica p e Y

the cleavage fracture: It is presumed that the part {1d of the
cross section facing the ice movement undergoes compression

The rate of energy dissipation per unit width as the band properushing. This part should be governed by E2g), and so the
gates must be equal to the fracture energy of the b@gd,which force given by that equation needs to be added to the fBrce
equalsGyw, /s, whereG; is the fracture energy of the axial split-based or(12) and(13).

2E 2
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5 Overall Fracture of Finite Ice Floe

Collision of a large ice floe with a fixed structure may cause
fracture of the whole floe. The floe is loaded by distributed inerti
forces of its mass, but the problem may be treated as essenti

quasi-static, owing to the low velocity of movement. Except f

the loading by distributed forces, the problem is similar to fractur\g_

tests in the laboratory, especially the three-point bend b@agn

3(d)). Dempsey’s record-breaking tests on the Arctic Ocean near
Resolute can be regarded as an approximate reduced-scale s
lation of this kind of fracturg[19,20). The analysis may follow .

similar lines as presented, for instance[ 18] for other materials.
From that analogy it follows that the siteof the floe may cause
one of two types of size effect:

P Lr -1/

D F7=% 1+|—_6 (30)
P rly)

(2) E:Sw(lJrT) (31)

where P/Lh

conditions, however, make the solution quite complicated. We will
ot pursue it here because of this and also because of two unre-
olved questiondl) An axial cleavage crack may be also present

P), and it may form either before or after the V-crack®)

Iimultaneous compression crushing is very likely in the case of
-cracks, which makes the value gf and thus the length of
cracks, rather uncertain.

Unlike the cleavage fracture, the V-shaped cracks can occur
ﬁqg}( from time to time. They do not represent a steady-state

chanism that would accommodate continuous movement of the
ice.

Other failure mechanisms occur in the case of an inclined face
of the fixed structure, or in the case of an icebredkg}). These
mechanisms involve axial bending cracks as well as bending
cracks normal to the direction of motion. Studying the action of an
icebreaker, Goldstein and OsipenK®| considered periodic for-
mation of LEFM bending cracks at some distance in front of the
icebreaker, normal to the direction of movement. They limited
attention to one-dimensional cylindrical bending of the ice plate
and did not consider simultaneous formation of axial or other

is the nominal strength of the whole floe;cracks.

So,Lo,S. Ly are constants that can be calculated by fracture me-

chanics; and is a parameter whose value is normally between 0

and 2.

? Conclusions(From Parts | and 11)

The first kind of size effect, which agrees very well with Demp- 1. The known mechanism of failure of a floating ice plate sub-

sey et al.’19] field tests in the Arctic, applies when a large crack
in the floe can form before the overall fracture of the floe takes
place. The second kind applies to failures at fracture initiation,

jected to a vertical load can be used in an approximate en-
ergy analysis of quasibrittle fracture. The results do not dis-

exemplified by the test of modulus of ruptufleending strength

and is pertinent if the maximum load is attained before a stable
finite crack can develoge.g, by means of the radial cleavage

mechanism

6 Comments on Some Periodic Failure Mechanisms

According to observations, diverging V-shaped cracks may also

form ahead of an obstacle.g.,[21], ch. ?); Fig. 1(e,f). To esti-

mate in a simple manner a rough approximate value of comple-
mentary energyI* of an infinite ice plate after formation of such

cracks, we may assume that the foRRdrom the structure pro-
duces stress only within the wedge between the créeigs 1(g)).
From a well-known solutiori[22]),

o,=—Pkycose/rh, o,=0,,=0 (32)

whereo,, o,, ando,, are the stress components in polar coor-
dinatesr, ¢, and
1
ky=1 0+ > sin26 |, (33)

0 being the inclination angle of the crackBig. 1(f)). The dis-
placement at =d/2 (structure surfageis

Pk,
dr= E

Oy

“:J i
d/2

E

2a

In (34)

ThenlIl* = Pu2=(P%,/2Eh)In(2a/d). The complementary energy

before fracture may be estimated as the valudléffor 6=,

agree with the limited field experiments that exist. They
approximately agree with previous numerical simulations
and confirm that for large ice thicknesses there is a strong
size effect, approaching the size effect of LEFM. Asymptotic
matching leads to a simple formula for the size effect, which
is similar to the size effect law proposed in 1984 by &aiz
Simplified fracture analysis of the nominal strength of ice
plate pushed against a fixed structure brings to light several
possible mechanisms of failure with size effects due to ice
thickness, the diameter of the structure and, if the size of the
ice floe is finite, the size of the floe. Buckling of the floating
plate causes a reverse size effect of ice thickriess the
nominal strength increasing with ice thickneasd therefore
plays any role only for sufficiently thin ice. Radial cleavage
of the ice plate against the direction of ice movement causes
a size effect of structure diameter which follows linear elas-
tic fracture mechanic6LEFM) for small enough diameters
and becomes progressively weaker with an increasing diam-
eter. Compression fracture, with ice crushing localized into
transversely propagating bands, causes a size effect of ice
thickness that follows approximately the classical size effect
law proposed in 1984 by Bant. The overall fracture of a
finite ice floe causes a size effect of the floe size, following
again the same size effect law.
. The present approach contrasts with the classical approach
based on either plastic limit analysis or elastic analysis with
a strength limit, both of which lead to no size effect.
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Microstructural Randomness
Versus Representative Volume
Element in Thermomechanics

M. OSIO]a-SIaI’ZEWSkI Continuum thermomechanics hinges on the concept of a representative volume element
Department of Mechanical Engineering, (RVE), which is well defined in two situations only: (i) unit cell in a periodic microstruc-
McGill University, ture, and (ii) statistically representative volume containing a very large (mathematically
817 Sherbrooke Street West, infinite) set of microscale elements (e.g., grains). Response of finite domains of material,
Montreal, Quebec H3A 2K6, Canada however, displays statistical scatter and is dependent on the scale and boundary condi-
e-mail: martin.ostoja@mcgill.ca tions. In order to accomplish stochastic homogenization of material response, scale-
Fellow ASME dependent hierarchies of bounds are extended to dissipative/irreversible phenomena

within the framework of thermomechanics with internal variables. In particular, the free-
energy function and the dissipation function become stochastic functionals whose scatter
tends to decrease to zero as the material volume is increased. These functionals are linked
to their duals via Legendre transforms either in the spaces of ensemble average velocities
or ensemble-average dissipative forces. In the limit of infinite volumes (RVE limit (ii)
above) all the functionals become deterministic, and classical Legendre transforms of
deterministic thermomechanics hold. As an application, stochastic continuum damage
mechanics of elastic-brittle solids is developedOl: 10.1115/1.1410366

1 Introduction While in plasticity the approach to RVE in a random micro-
structure may be rapid 10]), this is not so for damage phenom-

Presence of dissipative phenomena in mechanics of solids g na where presence of scatter is evident for even the largest speci-
fluids necessitates a formulation of continuum mechanics cons']e - P 9 P

. o - . ._omens that can be handled in the laboratory, € §1,12)). In fact,
tent with principles of thermodynamics; such a theory is briefl ' s .
called thermomechanicor continuum thermodynamicas lu- the dichotomy between statistical damage models motivated by

cidly and comprehensively elaborated in a recent book by Maug?ﬁa(:h observations and continuum damage mechanics based on the

[1], this challenge conventionally leads to a consideration of orpetermm}sélc TIVformaI;]sm_ls percelveg_ asone of ;he g_rand chal-
of four continuum thermodynamics: enges of damage mechani¢43,14)). This is one of major mo-

tivations of this paper.

« thermodynamics of irreversible processgt); As theoretical models we first consider strict-sense and wide-
 thermodynamics with internal variabl€SIV); sense stationary random fields, possessing ergodic properties.
« rational thermodynamic&RT); and Many models of microstructural randomness—e.g., Boolean mod-
 extended(rationa) thermodynamicgET). els and tessellations—possess such homogeneity and ergodic

) characteristics, and they are highly desirable in stochastic homog-
A feature common to all of these approaches is a postulate Gfjzation. Real materials, however, often lack these nice behav-
existence of a representative volume elem@WE). In other jqr5 and. as illustrated by measurements on machine made paper,

words, we are looking here at deterministic, homogeneous cqe may have to work with quasi-stationary and quasi-ergodic
tinuum theories, without clear account of random microstructuresnqom fields.

which are, in fact, prevalent in real materials. While we recognize pq g guidance in setting up a statistical volume elen{SME)

here that some statistical treatments were carried out as a bridgg| its deterministic limit. the RVE. in thermomechanics we take
from micro to macro levels for select variants of the abovge \ork on elastic microstructures carried out over the last de-
theories(e.qg.,[2,3]), such studies were concerned with providingaqe that relies on the Hill conditiofi15]). In essence, it says

foundations from the standpoint of statistical physics directly t¢5t the RVE response is independent of the type of boundary
the level of the RVE, without making clear what the size of,ngitions applied to ifi.e., uniform stress or uniform strain or

the RVE actually was. On the other hand, homogenization priyeir orthogonal combination For finite-size—which we call
cedure invoked to pass to the RVE in studies of plasticity a

damage(e.q., [4,5)) always involves a periodic microstructure: esoscale-material domains the Hill condition leads to three
~der L 'types of boundary condition§16]), and three types of apparent
see alsa([6]) for other physical problems, an{7]) for elastic/ yp y né16) yp bp

; - . . o -~ responses: uniform kinematic, uniform traction, and uniform
inelastic problems in composites. Some finite scale periodicifyi,a (orthogonal. It follows that in the case of dissipative be-

in random microstructures is also invoked in theoretical and NHaviors. we must primarily consider boundary conditions of uni-
merical studies of the RVE siz¢8,9)); in fact, this assumption form diésipative force or uniform velocity.

allows homogenization of elastic materials on very small length As continuum thermodynamics setting we take TIV, and, in

scales. particular, its variant due to Ziegl¢t 7] (also[18]) which defines
_ a broad class of continuous media from the free energy and dis-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Slpdatlor']f functlons([lgg). lnd many C(?S.es’ the unlfo_rml klgem%tlch
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF AppLIEDMEe-  @Nd uniform traction boundary conditions, respectively, bound the
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 31€ffective (in the macroscopic/global sensdissipative response
2000; final revision, June 12, 2001. Associate Editor: J. W. Ju. Discussion on tfiggm above and below; the larger are the mesoscale domains of
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departme : ; ;
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi .mate“al considered, the tlghter are the bounds. These bpunds,
be accepted until four months after final publication of the paper itself in the AsmB€fine a sequence of SVE, convergent to the RVE, and serving as
JOURNAL OF APPLIED MECHANICS. a basis of statistical continuum models. We discuss the bounds for
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thermal conductivity and damage phenomena. While mathems
cally at any finite mesoscale the bounds are distinct, the approz
to RVE, with increasing window size, to the effectiymacro-
scopig response, depending on the dissipative process considel
may be very rapid, moderate, or very slow. Furthermore, the fr
energy may display a different scaling trend than the dissipatit
function for a given microstructure.

(a)
2 Representative Volume Element(RVE) Postulate
and Structure of Random Media

2.1 Homogeneous and Ergodic Random Media.Let us
first recall the classical assumption of a representative volur
element(RVE) according to Hill[15]: it is “a sample that(a)
is structurally entirely typical of the whole mixture on average
and(b) contains a sufficient number of inclusions for the appare!
overall moduli to be effectively independent of the surfac
values of traction and displacement, so long as these vall (©
are ‘macroscopically uniform.”” In other words, we need,
respectively:

Fig. 1 Passage from a discrete system of tungsten-carbide

(a) statistical homogeneitgndergodicityof the material; these (black) and cobalt (white) (a) to an intermediate continuum

two properties assure the RVE to bfatistically represen- level (b) involving a mesoscale finite element, that serves as

tative of the macroresponse.g.,[20,21); input into the macroscale model accounting for spatial nonuni-
(b) some scalé of the material domain, sufficiently large rela-formity. Figures (@) and (b) are generated by a Boolean model

tive to the microscale (inclusion sizé so as to ensure the of Poisson polygons and a diffusion random function, respec-

. . tively ([45)).

independence of boundary conditions

Mechanics of random media, together with probability theory,
provides a rigorous setting for study of these iss(eeg.,[22]).
That is, the field problem of random medium structure with periodic¢or nearly periodit geometry, though pos-
B={B(w);0e O} @.1) sessing some randomness on the level of the unit cell: see rela-
' ) tions (2.8—(2.9) below.
is governed by an equation Evidently, the material propert§or properties ® of B(w) en-
tering the continuum mechanics model are to be described by a
Llwu=f wel (2:2)  random field over th®-dimensional spaced=1, . . . ,3)
accompanied by appropriate boundary and/or initial conditions.
Here L(w) is a random field operatgwith randomness caused by, 0:RPxOQ—RL (2.5)
say, elastic moduli being a random figld is a solution field, and
f is forcing function. Parametrization hy (element of the sample  There exist two types of statistical homogeneity: strict-sense
space(), endowed with a probability measuR® indicates the stationarity(SS9 and wide-sense stationarifvS9. In the first
source of uncertainty. Clearly, there are two more basic ways ¢ase we are assured of the invariance of any finite-dimensional
introduce randomness in a mechanics problem: probability distribution of® with respect to arbitrary shifts

» randomness in the forcing function—replacit®2) by Lu
=f(w)—as exemplified by problems of random vibrations;
* randomness of boundary and/or initial conditions.

Fx xm( 01, ... 10m):Fx1+x’ x +x (01, o ,0m)

L
) _ _ Vx' e RP. (2.6)

As we are interested here in the case described2®), we
note that each of the realizatioBg ) follows laws of determin- This is a very restrictive property. On the other hand, in the WSS
istic mechanics in that it is a specific heterogeneousD materi@se, we have invariance of the mean only with respect to such
sample. The problem of setting up the RVE of volumie L™ (D shifts, along with the dependence of two-point correlation func-
is space dimensionin the sense ofa) and(b) above, in a global tions on the interpoint separations only, that($ denotes en-
boundary value problem on length scalgg,.,is illustrated with  semble average
the help of Fig. 1; of course only ori®( ) is shown. In essence,

we want * mean{®(x))=const;
-1 o for any two pointsx;,X,e RP, the correlation function
(L7 u=f @3) Ke(x1. %) =([O(x1) ~ (O (x))[O(xz) ~(O(x;))])  satis-

with independence of boundary conditions as posited by Hill's fies
condition, on length scale satisfying

d<L <L macro- (2.4)

If that is the case, one can then simply deal with a determinist@learly, a much wider class of microstructures is described by

continuum thermomechanics problem on sdalg.,. Hereinafter WSS random fields then SSS random fields, and, as we shall see

we assume the microstructure to be characterized by a single dorthe next sections, the former are sufficient for the RVE.

relation radiud ., such as the mean separation between the fibersFollowing Eq.(2.4), we mentioned the microstructure with pe-

in a fiber-matrix composite, or mean grain site riodic geometry, possessing some randomness on the level of the
Both inequalities in(2.4) jointly ensure separation of scales inunit cell. An appropriate model is then offered bystict-sense

the deterministic continuum mechanics model. The first inequalitS cyclostationaryrandom field, which, for a planar system of

may be relaxed td<L because we may be considering a microsquareL X L unit cells, is stated as

Ko (X1,X2) =Kg(X1—X2). (2.7)
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. (61,....6,) (2.8) here elastic modulus, breaking strength, strain to failure, and ten-
o sile energy absorption of paper specimens sampled in an array in
whereL is a shift vector(in any combination of directions along the plane of paper wet=2) manufactured on a modern, high-
the coordinate axg¢sandm is any integer. Andy Warhol's 1972 speed paper machine. With referencg2®), E, 0 max, €max aNd
creationS&P Green Stampss helpful in visualizing this. TEA form a four-component vector random fiel@:R?x

When the microstructure has an imperfectly periodic geometry, p4 - A statistical analysis of maps such as Fig. 2, in the en-
in addition to possessing some randomness on the level of the Wainple sense, reveals spatial inhomogeneitydg&E in the
cell, then one should usewide-sens&WS) cyclostationaryran-  y _x,_directions(so-called machine and cross directions of the
dom field, which for a system of square unit cells is stated as paper wel This is not surprising given the fact that a paper web

Fx1+mL ..... xm+mL('911 s vam):Fxl

(O(x+mL))=(O(x)) may be tens of thousands of kilometers long between maintenance
(2.9) intervals on a papermaking machine.
K(xy+mL,X,+mL)=K(Xq,X5) It turns out that these material inhomogeneities are too general

to be described by locally homogeneous random fields, that is,
Jields whose variance of increments taken at different locations
%é)ends on the vector joining the locations, but not their absolute

lence of macroscopic responses between all the realizations of I8 es. Of course. besides paper. numerous natural and man-made
ensembleB, an ergodic random field is required. That is, we want > X ’ pap . , . P
terials display such globéle., “slow” relative to “fast” mi-

any realization to be sufficient to get the ensemble average frofift . s o )
. _ croscale fluctuations spatial inhomogeneities: cortical bone
the spatial averag@enoted by )

changing into cancelloous bone, ice fiel#4]), pig-iron cast into

wherelL is the same as if2.8), andm is any integer.
Returning to the WSS fields, we note that, to ensure the equi

1 N ingots, etc. If we letLy be the characteristic space scale of the
<®(X)>=f 0(w)dP(w)= lim & f O(w,x)dV=0(w). varianceog , the mean field®), and the correlation coefficiet,
Q Voo v either of the following, or some intermediate situation, would ap-
(2.10) ply
In practice(2.10 holds only with some accuracy, and the limiting
processV—o cannot truly be carried out. The latter can be dis- Lo=Lmaco O Lo<Lmacro- (2.16)
continued in the regions whose dimension V*P is large com- ) o ) .
pared with the correlation radids, so that(2.4) is rewritten as In ord(_er to deal with such variations in the ma_ter_lal one should
employ (instead of WS$a quasi-WSS random figlgust as the
lc<VYP~L <L acro- (2.11) so-called quasi-homogeneous fields—especially in the vertical

We assumé, to satisfy(with probability ong ergodic prop- direction—in atmospheric turbulen¢g25]). Thus, we write

erties with respect to the mean and the correlation function, that is
K(X1,%2) = Kijj(X1,X2) = 0i(X1) 07} (X2) pij (X1, X2)

1
lim —f@(x,w)dv=m=(®(x,w)> r r
vee Vv (2.12) = 06| R+ 5|06 R—5|p(r.R) (2.17)
1
lim v f (O(X,0)0 (x+AX,))dV=Kg(AX)+m?. wherer=x;—X, and R=(X;+X,)/2. Keeping in mind the con-
Voo v cept ofLg, for quasi-WSS fields we have

In practice, the left and right-hand sides @.12, and (2.12,
would be replaced, respectively, by a spatial average from a finite
number of sampling points taken over one realization

l.<Le (2.18)

and(2.17 is approximated by
N

— 1

®(w)zﬁn21 O(x,,0) (2.13) K(r,R)=03(R)p(r,R). (2.19)
and an ensemble average from a finite number of realizations |f we want to estimate the properties of RVE of voluMédrom
taken at one sampling point a single realization of the quasi-WSS random field, we effectively

N require it to bequasi-ergodic The latter concept means the ran-

1 dom field should be ergodic in volumes small as compared to the
(0(x))= NZ O (X, @p). (2.14)  characteristic length scalés, of variation of the field statistics,
et but (2.18 and(2.16 should still hold:
The ergodicity of these estimators—i.@(x,w)=(0(X,w))—is
assured, for sufficiently largid, by the property of the correlation d~1<V*™~L<Lo~Lmacro OF Lo<Lpacro. (2.20)
function
. We conclude that the RVE's microstructure is statistically repre-
lim Kg(Ax)=0. (2.15)  sentative ifV is sufficiently small for fields under consideration to
|Ax| e be statistically homogeneous and ergodic within its confines, and,

This, for instance, is the case with Voronoi mosaics based orathe same time, “the volume is so large that the fi@ldithin V
Poisson point field, both in two dimension and three dimensiotdergoes sufficient spatial fluctuations.” The situation is addi-
([23]); our Fig. 1a) employs such a process. Many random mitionally complicated by a possibilitl g <L nacro-
crostructure models are set up on the basis of point fields, or theirThus, the following key problem arises: the separation of scales
modifications. Real materials, however, oftentimes challenge dindL may be too large to allow the satisfaction of both strong
with spatially inhomogeneous patterns. The models can then etgqualities< in (2.20,. With reference to Fig. 1, passage from
ily be generalized by taking spatial inhomogeneity, but the cotthe random microstructure in Fig(d) to a homogeneous con-
cepts of homogeneity and ergodicity—especially from the stantihuum may require length scaleghat are too large for entry into
point of measurements—need to be relaxed. the macroscale problem of Fig(cl occurring on scales acro-
As a compromise, some intermediate random continuum approxi-

2.2 Quasi-Homogeneous and Quasi-Ergodic Random Me- mation of Fig. 1b) may have to be introduced, but a quantitative
dia. A typical example of inhomogeneous fluctuations in meassessment of the approach to a homogeneous continuum can only
sured material properties is shown in Fig. 2. In particular, we sée made with the help of a mechanics problem.
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Fig. 2 Sampling of paper properties via a gray-scale plot of (a) elastic modulus E Ibf/in; (b) breaking
strength o4 in Ibf/in; (c¢) strain to failure &, in percentage and (d) tensile energy absorption TEA
Ibf/in. All data are for a 25 X8 array of 1 "X1"” specimens tested in the x-(machine) direction. The ranges
and assignments of values are shown in the respective insets.

3 Hill Condition in Thermomechanics, and Mesoscale stress,A force associated to internal dissipative processijs

Response elastic straind® is elastic deformation ratel? is plastic deforma-
The RVE response in TIV is described by the free enaiggnd  tion rate,a is rate of internal parameters,is heat flux, andr is
dissipation functiond, both of which are scalar products temperature. o o
1 The problem we are facing is one of dependence of constitutive
P="g. BP=P.,.+P. =0 response on scal@ That is, we want to be able to say something
27°°F th* Hinte about the functionals¥; and ®; for the ensembleB;

— ) (3.1) ={Bs(w);we Q} where the scal@ is finite rather than infinite—

Pp=—q-VT/IT Pjy=Y-a=0"-d°+o-d’+A-a below the RVE limit; this is a particular case .2). Such issues
where the Clausius-Duhem inequality expresses the second l@re addressed extensively for linear elastic matet@ts.,[26—
of thermodynamics withd,, being the thermal dissipation and31]), for nonlinear elastic material§32,33) as well as for vis-
®;,, the intrinsic dissipation. The latter quantity is a scalar prodtoelastic and damage phenomefa4]); see also further refer-
uct of the dissipative forc¥ with the velocitya (rate of the state ences in these works.
variablea). As an example®,, is taken to involve viscous, plas- We recall, with reference to these papers, that properties of an
tic and internal effects. Thugr is Cauchy stressg” is viscous elastic body can be defined from a mechanical standpoint—i.e.,
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via Hooke’s law—or using energy—i.e., a Clapeyron type of foralmost surely(i.e., with probability ong Just as in elasticity stud-
mula. Both approaches are equivalent for a homogeneous mategal we use the term “apparent” to distinguish the mesoscale prop-
but not necessarily so for a heterogeneous one. Therefore, by aedlies from the effectivémacroscopic, global, or overalbnes. In
ogy, in the case of a linear dissipative behavior, the mechanithk latter case, the fluctuations disappear in the lifritc be-

approach may involve a statement like cause of the ergodicity assumption of previous section.
— We assume the composites to be made of just one djza,
Y=Cpa (32) inclusions; we exclude slips and cracks. In the following it will be

which leads to an apparent, mechanically defined propegty ~Cconvenient to work with a nondimensional parameter

Y;; being the resultant volume average dissipative force. Alter- L

nately, it may involve o= q (3.13)
a=S,Y (3.3)

that characterizes any property associated with the windows such

which leads to an effective properSy,, a being the resultant @S those shown in Fig. 2. We shall refer to the casec as a
volume average velocity. mesoscaleas opposed té— which is called anacroscale 5~1

On the other hand, the energy approach is stated as a volufi@hifiesmicroscale or a micro-elemen(21]).
average of the dissipation

=-Ya (3.4) 4 Thermal Conductivity in Random Media

Let us first consider thermal conductivity, in a stationary state,
in a two-dimensional random medium in tle, X,-plane, gov-
N erned locally by the Fourier’s law
d=-2a.C,-a (3.5) _

Clearly, when force and velocity fields are written ¥s-Y  This paper’s leitmotiv “microstructural randomness versus the
+Y’ anda=a+a’, whereY’ anda’ are zero-mean fluctuations, RVE postulate” leads us, with reference to research papers men-

or a volume average of the velocity

and next, when{3.2) is recalled,(3.4) becomes tioned in Section 3, to state two principal results in this area:
- 11— 1_ - 1— « order relation for any bodB(w) € B
CIJ=§Ya+§Y’a’=§aCma+EY’a’. (3.6) . e
(Ri() '<K§(w) V& 4.2)
A comparison 0of(3.5) with (3.6) shows thatC,, is identical with « hierarchy of bounds for the ensemiBe
C. providing
— RU)TIS(RD T I=KOf<(KH=<(KS) Vo&'<6s. (4
Y'a'=0 (37) < 5) < é‘) < 5> < 5> ( 3)
or, equivalently, The inequalities between any two second-rank tensor_md B
o are understood asB-t<t-A-t, Vt#0. R}(w) andK§(w) in the
Y-a=Y-a=0 (3.8) above are apparent resistivity and conductivity tensors obtained,

which may be called thefill condition for dissipative processes "€SPeCtively, unéjer uniform naturah_((.x):q?ni). and uniform es-

For an unbounded space doméi->o), (3.8) is trivially satis- sential (T(x) =T ;x;) boundary conditions applied to the boundary
fied, but for a finite bodyBs(w) it requires that the body be 9B, of Bx(w). _
loaded in a specific way on its boundars. Following Hazanov ~ Clearly, the hierarchy of bound&.3) may be expressed in
and Amieur[35], from (3.8), and employing the Green-Gausserms of the apparent dissipation functidn(VT) and its dual
theorem, we find a necessary and sufficient condition(3d8) HE)

_ * (0 < * 40\ < peff 0) < 0
By <d4(VTY) V&<6 (4.4)

whereY plays the role of stres@.g., ¢ of (3.1)) and.gthe role where, by virtue of ergodicity and stationarity assumptions, we
of conjugate strain rate. In case of a process described by interpale

variables,(3.9) is a requirement of its spatial homogeneity. o - oo 0
Now, relation(3.9), distinguishes three types of boundary con- D5 (q)=D*N (") =PVT) =D (VT"). (4.5)
ditions on the mesoscalaniform kinematidalso called essential

L e ' In other words, in(4.5 we have several equivalent statements:
or Dirichlet) boundary condition (4.5 9

effective, macroscopic, infinite sjzetc. This RVE situation
v(x)=&-x VxedB; (3.10) (6—=) is approached in practice only with some accuracy at a
. i . finite 8. The actual choice of accuracy—be it, say, two percent—is
uniform traction(natural, or Neumanrnboundary condition up to the researcher working on a given problem.
t(x)=Y%n VxedB, (3.11) The joint dependence of material response on seale on
) ) ) ) ) choice of independent variablee., VT or q) leads to a graphic
uniform kinematic-tractiortalso called orthogonal-mixedhound-  representation of dissipation surfaces in the space of volume-
ary condition averaged velocity (i.e., thermal gradieri@ T) or forceY (respec-
(V(x)—&-%)- (1(x)—=Y°-n)=0 VxedB;. (3.12) tively, heat fluxq) in Fig. 3. Note thalV T=VT° andg=g° for a
body with spatially continuous temperature and heat fields. De-

Each of these boundary conditions results in a diffeeppiar- henging on how we take ensemble averagi8s]): we arrive at
ent responseHenceforth, we focus on the first two conditionghese [egendre transforms for finite-sized bodies:

because they provide bounds on the response under the third one. _

For any realizatioB 5(»), a window’s response on the mesoscale (i) case ofa=a° being an independent variable

(6 finite) is, under these definitions, nonunigue—because the re- . S

sponse undef3.10) is not an inverse of the response unéza.1) DY) +H(P (@) =(Y)-a (4.6)
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Fig. 3 Thermodynamic orthogonality in (a) the spaces of ve-
locities @' ; and ensemble average forces (Y; on mesoscale &, <]
with AY, showing scatter in Y 5; (b) the spaces of velocities a
=a, and ensemble average forces Y =Y, on macroscale,
where the scatter in a” ; and Y 5 is absent; (c¢) ensemble-average
velocities (&5) and forces Y 5 on mesoscale, with  Aa; showing

JOL

scatter in @ 5. In all the cases, dissipation functions  ® and re- d
spective duals ®*, on mesoscale (parametrized by &) or mac- <
roscale (parametrized by o) are shown.

(c}
(i) case ofY =Y? being an independent variable i ) o ) )
g p
Fig. 4 Antiplane responses of a matrix-inclusion composite,

<cp§(?)>+q)ﬁ(§):?. <§> (4.7) with 35 percent volume fraction of inclusions, at decreasing
contrasts: (a) cVrcm=1, (b) cPcmM=0.2, (c) c?Prctm
In the 5—< limit (4.6)—(4.7) become =0.05, (d) CV7c'™=0.02. For (b-d), the first figure shows re-
— — - sponse under displacement b.c.'s &9, while the second one
ey + pef(a) =Y. a (4.8)

shows response under traction b.c.’s 02=¢71 computed from
Unfortunately, these Legendre transforms are not reversible fe first problem.

cause, with reference to heat conductivity, uniform boundary con-

dition with VT=VT° yields a different apparent response from

that under nonuniform boundary condition of the same mean

value VT. This, and the analogous observation on the natural
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Table 1 the results above apply to the antiplane elasticity of a two-
dimensional random medium of the same microstructure, and

Thermal Conductivity Antiplane Shear Elasticity governed locally bWi3:Ci3j 5)3-
TemperatureT Displacementy This analogy confirms tha&f T should be taken as a velocity-
Temperature gradieng=T; Strain, &;=U; 3 B like variable andj as a force-like variable in the thermomechanics
Hggg gﬂi,;h_ro“gh a boundarg,= q;n; I:r;fé'ﬁ; ;tréasgf_:”dary'_ 7N of random media, which choice would reverse the roles of these
Conductivit'y, —K;; Stiffness,Ciis ' variables conventionally assigned in TIV., but does agree with RT.
Resistivity,R;; Compliance Sizj3 Also, we note that whatever was said above for the irreversible
Thermal dissipation, Strain energy, thermodynamic process of heat conduction does also hold for the
?I)D/S-Ia—l): tﬂ;%ﬁféﬁéggldé% \é'ozm‘gl‘gr/ﬁe:n%%;&s%fé{g energy, antiplane elasticity, and hence Fig. 3 may be interpreted in terms
O 2T =R, 0,/2 V¥ = 0,S5,30,12 of the strain energies in the spaces of strains and stresses.

A very wide class of elastic/dissipative materials of nonlinear
type may be obtained by postulating the local behavior to obey the
thermodynamic orthogonalitff 17,37]) as expressed by Fig(l3.

The thermodynamic orthogonality, as well as the entire procedure
. . bf derivation of constitutive laws from the free energy and dis-

butlo_ns,_ for two basic types of_boundary_ value prob_lems on sETpation functions, are of primary interest with respect to materials
mfatnx-lnclusmn composite In Fig. 4. In light of Se.Ct'O.n 3, WEyith dissipative processes described by the intrinsic dissipa-
might also set up a reversible Legendre transformation in the cg; ®,,, rather than the thermal dissipatidn, above. The next

of uniform orthogonal-mixed boundary conditions on mesoscalgection' therefore, discusses thermodynamic orthogonality on
although there still remains a nonunique choice of the actual sefRsoscale

of the Y°,&%-loading.

For the relationg4.6)—(4.7) one needs to assume that, for each
specimerBs(w), -
(i) the function® 4(&,w) depends ora alone, and is star-shaped,5 Thermodynamic Orthogonality on Mesoscale
convex, and homogeneous of degree

boundary condition, is illustrated in terms of the boundary distr

5.1 Quasi-Homogeneous Dissipation Functions.A wide

— 9 — _ class of dissipative processes is described by dissipation functions
a—=>Psaw)=rdsaw). (4.9) @ 4(aw) of quasi-homogeneous tyfE27]). Following the gen-
a eral frgmework giver_l in([36]),_w¢_a now consi_der the apparent
(i) the functiond)’;(\?,w) is star-shaped, convex, and homogebehav'or to be descrl_ged by d|§S|pat|on _fu_nctlt_)ns of that type on
neous of degree mesoscale, so that 5(a, ) pertains to a finite-sized bod¥/s(w)
— 4 — — _ 9 _ _
Yi?®[sL(Y,w)=r¢>§(Y,w)- (4.10) a—®5(8,0)=f(P (8 0)) (5.1)
Y ﬂ-ai

Note that® s(&,») and ®%(Y,w) are almost surely not inverseswhere functionf is arbitrary. This, of course, implies that the
of one another because perfectly homogeneous domains of matesoscale dissipation functions in the space of dissipative forces,

rial carry probability zero in thé) space. . ®*(Y,w), are quasi-homogeneous too, that is
It is of interest to note here that the conventional Onsager-

Casimir reciprocity relations—that apply to Figlb3—need to be e .=
reconsidered depending on whether we work in the space of ther- Yi—=®5(Y,0)=9(P5(Y,0)). (5.2)
mal gradients or the space of heat fluxes for finite-sized bodies in Y;

Figs. 3a) and (c). Thus, in the first case we actually have tWo  Gjyen the nonuniqueness of the mesoscale response, these two
choices: when we are either on the surféde;(a)) of Fig. 3@  functions are not perfectly dual of each other—just as was dem-

onstrated by Fig. 4. Clearly, we have two alternatives:

oY) oY) _ o _
—— == (411) (i) assume velocitya to be prescribedcontrollable for the
B 93, 93 body Bs(w), the result beingr;
or on the surface s5((a)) of Fig. 3(c) (i) assumeY to be prescribedcontrollable for the body
_ _ Bs(w), the result being.
Y Y )
_— (4.12) In the first case, on account .1), for anyBs(w) we have
oaj)  oa) _
When working in the space of heat fluxes we also have two Yi(w)= q)é(—i’w) é®5(gw). (5.3)
choices: when we are on the surfadd ((Y)) of Fig. 3(a), we f(D x4 w)) Vi
have _ _
- - If for every B s(w) we define a functiorp(a, w) from ® 4(&, w) by
da; o4 (4.13) — D,
ORRAL | ""’(a""):f (@, 4% 64
while on the surfac¢d>§(7)> of Fig. 3(c), we have and let the additional constant itb.4) be fixed by setting
_ _ ds(Ps(a,w)=0)=0, upon ensemble averaging, we obtain
Xai)  ay)
- = (4.14) _ d — d —
N, av, (Y)={ = 4@ | = —(05d)). (5.5)
EEY PEY

In (4.12—(4.13 averaging is to be conducted prior to differentia-
tion. Noting the well-known analogy between the antiplane shearTurning now to the space of dissipative forces, we may proceed
elasticity and the in-plane conductivififfable 1, we see that all in an analogous fashion. That is, we may either consider a random

Journal of Applied Mechanics JANUARY 2002, Vol. 69 / 31



dissipation functionb*(Y,®) in the space of controllable forces 5.2 Extremum Principles. The foregoing generalization of

resultinging(w), or a deterministic@j;((?)) in the space of
averagg(Y) such that

DEY)).

a=v (5.6)

a(Yi)

Relevant to our analysis leading 6.6) is the latter situation. On
account of(5.2) the connection betweeland(Y) reduces to

— oY) o -
a=———— —P5((Y)=n—P5(Y)) (5.7)
9(PF((Y)) &(Yi) a(Yi)
where
9 -1
p=>0% Y, — &} (5.8)
aY;
If we now define a functionss((Y)) from d)*(;((?)) by
UA(Y)= f gt 9% (5.9)

and lety;(®%((Y))=0)=0, we can write, instead db.8),

B () (5.10)
%y

whereby
$58=0)=0 ¥,(Y)=0)=0. (5.11)

We will now consider two curvesC in velocity space and its
imageC’ in force space. Curv€ connects the origi® with a
point P with coordinatesa, while C' connects the origi®’ with
the imageP’ of P having coordinate$Y). Thus, we have

[ @i+ [ @ac- [ awm-wa. 612
C c’ C

In light of (5.6), (5.11), and(5.12), this leads to a Legendre trans-

formation corresponding to case,

(D) + (V) =(Y)-a=DE((Y)). (5.13)

An analogous analysis for casg) results in a very similar

the formulas relating the dissipative force with the velocity via
functions ® s and ®% leads us now to a generalization of the
extremum principles of deterministic thermomechan({d,18))

to the random mediunB;={Bs(w);weQ}. Let us discuss
these principles ford 4(&,w); the same results will then carry
over automatically folb% (Y, w) by the argument of duality. Two
different approaches—depending on whether velocities or forces
are prescribed—were already considered, and their relation to
the extremum principles for the case of apparent homogeneous
dissipation functions of order (& d® s(a,w)/da;=r® s5(a w)

and Y;0®%(a,0)/dY;=r®4Y,0)) is expounded in the
following. o

Approach 1. & is prescribed andf(w) follows from the en-
semble of random dissipation surfacés;(a,») according to
Yi(w)=\ ()i s(a w)lda;; Fig. Ja).

The principle of maximal dissipation ratr a random medium
B, reads: Provided the dissipative for¢¥) is prescribed, the
actual velocitya maximizes the dissipation rate{®=(Y) -a
subject to the side condition

(®4(8)=(Y)-a=L§">0. (5.19)

Theprinciple of least dissipative forder a random mediurs
reads: Provided the valy@ s(&)) of the dissipation function and
the directionn_of the dissipative forc€Y) are prescribed, the
actual velocitya minimizes the magnitude gfY) subject to the
side condition(5.19). -

Approach 2 Y is prescribed andi(w) follows from the en-
semble of random dissipation surfacés;(Y,w) according to
g ()= p(w)dP3(Y,0)/dY;; Fig. 30).

The principle of maximal dissipation rateeads now: Provided
the dissipative force/ is prescribed, the actual velocitg) maxi-
mizes the mesoscale dissipation rafd =Y. (a) subject to the
side condition

D 4((&)=Y-(&)=L">0. (5.20)

Theprinciple of least dissipative forder a random mediurd
reads: Provided the valuk s((&)) of the dissipation function and
the directionn of the dissipative forc&’ are prescribed, the actual
velocity (&) minimizes the magnitude of subject to the side
condition (5.20.

Clearly, the heterogeneity of material microstructure is the key
cause of random constitutive behavior. The rate of dissipation per

Legendre transformatiofuuality between the results in the veloc-mesoscale volume dB; varies from one specimen to another,

ity space and those in the force space

bs((@)+(Ps(Y))=Y - (8) =D 5(((8)) (5.14)
where
_ J _
Yi=—— ¢5((3) (5.15)
&)
and
9 _
(a)=—(vsY)). (5.16)

Yi

The functionse s((a)) and(ys(Y)) in the above are defined by

_ [6)) _
$:((8)) = f o1 Pm0A@)  (617)
and, for everyB 4(w),
_ D% . R
¢5(Y,w)=fmd¢5 PE=0%(Y,w). (5.18)

32 / Vol. 69, JANUARY 2002

unless the microstructure is perfectly deterministie., periodig

or contains an infinite number of elemertéesg., grains In gen-
eral, therefore, the spatial distribution is a cooperative stochastic
process, a subject considered in the next section.

6 Material With Elasticity Coupled to Damage

6.1 Basic Considerations. Let us now consider a material
whose elasticity law—as described in Section 7.5.1[#)—is
described by

0ij=(1-D)Cjjqex (6.1)

whereCj;,, is isotropic, and which must be coupled with a law of
isotropic damage, that is

D=0®*/9Y (6.2)

with Y=—0W/de, ¥ being the free energy. In particular, the
scalarD evolves with elastic dilatation straia=¢;;, which is
taken as a time-like parameter, according to

dD [(eleg)s® when e=ep and de=dep>0

6.3
0 de<0. 6-3)

when e<ep and

Transactions of the ASME



Integration from the initial condition® =e,=0 up to the total - 0<E 0. (6.13)
damagep =1, gives . . - .
Because the solutiot” ,Z" under the restricted conditio®.8) is

D=(eleg)® ** sR:[(S*+1)sg*]S*+l an admissible distribution under unrestricted conditi6ry) (but
not vice versy from the above we have
=[1—(eleg)s THE 6.4 - —
o=[1—(eleg)® "*]Ee (6.4) To=e. o (6.14)
whereo=gj; . ) i
All of the above are to be understood as an effective law for tH8 View of (6.9), we find
RVE, that is 7(@)=(1-D}(®))C(w)-&°
Cil=Cij_ D'=D, ve=v, =0, ... (6.5) 18
_ = A d .0
as well as a guidance for adopting apparent responses on mesos- 4 521 (1 Da;(“’))cag(‘”) £ (6.15)

cales. Thus, assuming that the same types of formulas hold for any o )
finite 5, we have an apparent response for any speciBigw) SO that upon substitution int®.13 we obtain

) =(1-DHCY w)- & (6.6) (1-DYw))C=(1-DY,(w))CY V&'=582. (6.16)
under uniform displacement boundary conditian(x)= £°- x. We may now recall that in the virgitno damagpstate
The notationg expresses the fact that material damage is depen- 14
dent on the mesoscalé and the type of boundary conditions Cg(w)gcgy(w)E_E C;’,(w). (6.17)
applied (i.e., d). In fact, while we could formally write another 451 %

apparent response{w) = (1- D) "*Sy(w)- ¢°, we shall not do
so because a damage process under traction boundary condigj
(t(x)=o®-n) would be unstable.

hus, we conclude that the damage parameter satisfies a scale-
RBct relation opposite to that seen for effective moduli

d <p¢ I =

6.2 Scaling of Damage ParameteD. It is now possible to Dy(w)<Dylw) Vo'=dl2. (6.18)
obtain scale-dependent bounds@f through a procedure analo-In view of the assumed WSS and ergodicity properties of the
gous to that in linear elasticity without dama(26]). To this end, material, this results in ensemble averages
we partition a square-shaped wind®y( ), of volumeV;, into d d ,
four smaller square-shaped windovBs,;;(w), s=1,...,4, of (Dy)=(Dy) V&'=dl2. (6.19)
scaled’ =82 and volumeV s each. Next, we define two types of By applying this inequality to ever larger windows ad infinitum
uniform displacement boundary conditions, in terms of a preve get a hierarchy of bounds QDi)=De’fEDx from above
scribed constant straig®, over the windowB s(w):

d ’
unrestricted (D§)<(DH=...<(DY) V& =52 (6.20)
u(x)=€%x VxedB, 6.7) The above_inequa_lities are consistent With the much more phe-
] nomenological Weibull-type modeling of brittle solids: The larger
and: restricted the specimen the more likely it is to faié.g.,[11,38). We have

thus provided a derivation of the scaling law in such materials via
mechanics of random media.

superscriptr in (6.8) indicates a “restriction.” That is(6.7) is 6.3 Stochastic Evolution ofD. Of interest is formulation of
given on the external boundary of the large window, whet6a8 5 stochastic model of evolution & s in function of ¢ to replace
is given on the boundaries of each of the four subwindows. Let 4 3). : in other words, we need a stochastic procBsgw,e);
note, by the strain averaging theorem, that the volume average () ¢ [0,e]; recall thate is a time-like parameter. Assum-
strain is the same in each subwindow and also equals that in ms for simplicity of discussion, just as ifi4]), thats* =2, we

large window may consider this setup

u'(x)=£%x Vxe 9By s=1,...4 (6.8)

e'=e=¢ s=1....4 (6.9) dDy(w,6)=Dyw,e)+3e1+r5w)]dt Dyw,0=0 (6.21)
Let &€ be any kinematically admissible fields: They satisfyyherer ;(w) is a zero-mean random variable taking values from

everywhere the local stress-strain relati¢fs) and the displace- [ 4 a.], 1/6=as<1. This stochastic process has the following
ment boundary conditiof6.7), while T is derivable from a con- properties:

tinuous function such tha;; =Ty ;, but & is not necessarily in o o _ )
equilibrium. Now, there is a minimum potential energy principle (i) its sample realizations display scatieby-w for 6<, i.e.,
for the fieldso,z in Bs(w): for finite body sizes;
(i) it becomes deterministic as the body size goes to infinity in
the RVE limit (6—);

-~ 1( __ 1
LBgu-tdS— 2 L’f.o’dvg J’ﬁB;u-tdS— 2 L:’Udv' (6.10) (iii) its sample realizations are weakly increasing functions of
"

For the displacement boundary conditiof ;=B and B} (iv) its sample realizations are continuous;
=, so that (v) the scale effect inequalit§6.20 is satisfied, providing we
1 1 take eg a function of 8 with a property
Ef e‘adV=‘I’(w,s)s‘I'(w,’é)=§f €odv  (6.11) er(8)<er(d) V& =62. (6.22)
Bs Bs
or Let us observe, however, that, given the presence of microstruc-

ture, mesoscale damage should be considered as a sequence of
cO0<E O (6.12) micro/mesoscopic events, thus render_ing _the apparent damage
processD s(w,e);we Q,e e[0,eg] one with discontinuous paths
However, the Hill condition3.8), combined with the fact that having incrementsiD; occurring at discrete time instants, Fig.
£°=F, allows us to write 5(c). To satisfy this requirement one should, in place of the above,
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c/E | The essence of this section is to outlinestachastic continuum
damage mechanidhat (i) is based on, and consistent with, mi-
cromechanics of random media as well as the classical thermome-
chanics formalism, andii) reduces to the classical continuum
damage mechanics in the infinite volume limit.

7 Conclusions

(@ e/ep Continuum thermomechanics of homogeneous media hinges on
= 4 the concept of RVE, which is well defined in two situations only:

E(1-D) 1 (i) unit cell in a periodic microstructure, arid) volume contain-

ing a very large(mathematically infinite number of microscale
elements(e.g., molecules, grains, crystplgpossessing ergodic
properties. Modern materials, however, increasingly require one to
work with small domains where neither of these two cases is met.
As a result, response of finite volumes of material displays statis-
(b) > tical scatter and is dependent on the scale and boundary conditions
e/ep (typically kinematic or traction controllegdThe need for stochas-

tic homogenization of material response, which has been met by

A
} scale-dependent hierarchies of bounds for elastic materials, is ex-

/ tended here to dissipative/irreversible phenomena within the

framework of thermomechanics with internal variables. In particu-

lar, the free-energy function and the dissipation function become
stochastic functionals whose scatter tends to decrease to zero as

the material volume is increased. These functionals are linked to

gZR their duals via Legendre transforms either in the spaces of
(© ensemble-average kinematic variables or ensemble average force
variables. It is in the limit of infinite volume$RVE limit (ii)
coupled with damage, where /¢ plays the role of a control- abovg) that all the functionals become det.e‘rm.inistic, and that the
lable, time-like parameter of the stochastic process. (a) Stress- classical Legendre t(an_sforms of determlnlstu_: thermomec_hamcs
strain response of a single specimen B () from B 5, havinga  hold. The procedure is illustrated by two constitutive behaviors—
zigzag realization, (b) deterioration of stiffness,  (c) evolution of thermal expansion coefficients and elastic-brittle damage—for a
the damage variable D. Curves shown in (a-c) indicate the  wide class of materials with random microstructures.

Fig. 5 Constitutive behavior of a material with elasticity

scatter in stress, stiffness and damage at finite scale ~ o. Assum- In the case of heterogeneous media, thermomechanical re-
ing spatial ergodicity, this scatter would vanish in the limit (6 sponse laws are not unique—they depend on the scale and the
=L/d—=), whereby unique response curves of continuum choice of boundary conditions applied to the given material do-

damage mechanics would be recovered. main. Such response laws are called appaftentmesoscopig

they become effectivéor macroscopicin the limit of infinitely
large volumes. For the elastic part of response we can prove that
the apparent laws bound the effective law. For the inelastic part of
response, when there is a field variational principlestic behav-
ior) or some link(e.g., elastic-brittle damager analogy(e.g.,
thermal conductivity to elastic behavior, we can also prove that
p(e’,D5Dy,e)de’dDs=probability that, given the process isthe apparent dissipative responses bound the effective dissipative
in stateD s at timee, its next jump will response. When such a link is not present, the latter is only a
occur between times+¢’ ande+¢’  conjecture.
+de’, and will carry the process to To be statistically representative, the RVE needs to possess
some state betweeB,+D) and D, SOme type of ergodicity and statistical homogeneity. A random
+D'+dD’ field that lacks either of these properties cannot lead to a homo-
g o geneous continuum model of a random medium. Thus, a random
Figure 8b) shows one realizatiol® 5(w,e);we Q;e[0,gr] field that is stationary and nonergodic does not offer a chance of
of the apparent, mesoscale stiffness, corresponding rgaching a statement in the sense(®f). However, a random
Ds(w,e);weQ;ec[0eg] of Fig. 5c). In Fig. 5a) we see the field that is ergodic and nonstationary—such as encountered in the
resulting constitutive responses(w,e);w e Q;e €[0,eg]. interphase zone of functionally graded materials—could be
Calibration of this model(just as the simpler one abovethat smeared out by an inhomogeneous continy[4a]). In any case,
is, a specification op(e’,D}5|D 5,e)de’dDs—may be conducted the approximating mesoscale random field is nonunig@lie to
by either laboratory or computer experiments such as thosetimee types of boundary conditions admissible by the Hill condi-
([39,40). As pointed out in the first of these references, in thgon) and almost surely anisotropic pointwise.
macroscopic picturés—o) the zigzag character and randomness Scale dependence discussed in this paper indicates that many
of an effective stress-strain response vanish. However, théssues require further research. For example, assuming we have a
studies—as well as many other works in mechanics/physics mfaterial governed on the microscale by some homogeneous dis-
fracture of random mediee.qg.,[41]), indicate that the homogeni- sipation function of orden+ 2, are the apparent dissipation func-
zation with 6—« is generally very slow, and hence that the asions on mesoscales, as well as the effective dissipation functions
sumption of WSS and ergodic random fields may be too strong fon macroscald §—), of the same order? Or, considering that
may applications. inclusion of higher gradients of displacement field provides a bet-
Extension of the model from isotropic tonuch more realistic ter description of the spatially inhomogeneous plasticity and dam-
anisotropic damage will require vector, rather than scalar, Markage processg$43,44]) what is the formulation of such models for
processes. This will lead to a somewhat greater mathematicahdom media?
complexity which may be balanced by choosing the first model of The proposed generalization of thermomechanics to grasp ran-
this subsection rather than the latter. These issues are second#ogn nature of materials offers a basis on which to set up stochas-

take aMarkov jump proceswhose range is a subgé, 1] of real
line (i.e., whereD 4z takes values This process would be specified
by an evolution propagator, or, more precisely, byext-jump
probability density functiordefined as follows:
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On Perturbation Solutions for
Nearly Circular Inclusion
Problems in Plane
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Professor An approximate analytical solution to the nearly circular inclusion problems of arbitrary

shape in plane thermoelasticity is provided. The shape of the inclusion boundary consid-
ered in the present study is assumed to have the formyf1 +A(6)], where g is the

radius of the unperturbed circle and(#) is the radius perturbation magnitude that is
represented by a Fourier series expansion. The proposed method in this study is based on
the complex variable theory, analytical continuation theorem, and the boundary pertur-
bation technique. Originating from the principle of superposition, the solution of the
present problem is composed of the reference and the perturbation terms that the refer-
ence term is the known exact solution pertaining to the case with circular inclusion.
First-order perturbation solutions of both temperature and stress fields are obtained ex-
plicitly for elastic inclusions of arbitrary shape. To demonstrate the derived general
solutions, two typical examples including elliptical and smooth polygonal inclusions are
discussed in detail. Compared to other existing approaches for elastic inclusion problems,
our methodology presented here is remarked by its efficiency and applicability to inclu-
sions of arbitrary shape in a plane under thermal loafDOI: 10.1115/1.1410367

Department of Mechanical Engineering,
National Taiwan University of Science and
Technology,
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1 Introduction taneously the exterior and interior of the inclusion onto the one
ith simpler shape, this technique is unable to directly apply elas-
ceinclusions of any shapésee, e.g., Jaswon and Bharg#d8],
endecky[11], and Ru[12]). The idea of neutrality in the context
inhomogeneities of various shapes imbedded in a two-

In many engineering applications, determination of therm
stresses is taking a more and more important role in analyzing
service life of advanced composite materials exposed to high te
perature environments. In the cases that there is an inhomogen % . ) . ; .
existing in an infinite matrix subjected to a remote heat flux, tHimensional elastic body is another important tofsee, e.g., Ru
insertion would induce nonuniform temperature disturbance t ], and Benveniste and Milolj14]). For a nonideal interface
can create nearby stress concentration and result in material degiween the matrix and the inhomogeneity,[R8] showed that if
radation. The example of such problems was studied earlier g}p interface paramet_er which rel_ates the _dlscontlnuny of the dis-
Florence and Goodidi,2] who solved the stress field for insu-Placement to t_he tractions at the_ mterfacg is properly chosen, t'hen
lated ovaloid holes or spherical cavities embedded in an infinifetwo-dimensional stress field in the original body will remain
matrix. Since then a number of the hole or inclusion problem#disturbed after the introduction of the inhomogeneity. The ex-
have been studied, such as Ch@hfor orthotropic materials with istence of neutral inhomogeneities of various shapes in a conduc-
an elliptic hole based on the complex variable technique devéien problem was studied by Benveniste and Mi[d4] who de-
oped by Green and Zerfid], Hwu [5], for an anisotropic medium rived the conditions to be satisfied by the field variables at a
with an elliptic hole based on Stroh formaligi®troh,[6]), Kattis nonideal interface with a variable interface parameter. To the best
and Meguid[7], for isotropic media with an elastic inclusionof our knowledge, no analytical exact solution is available for
based on the complex variable representations, and Chao #musions of any shape except the one with a family of ellipses.
Shen[8], for an elliptic inclusion problem in a generally aniso-Hence, from a practical viewpoint, an approximate general meth-
tropic body based on the method of Lekhnitskii formulation anddology that gives an analytical solution for elastic inclusions of
the technique of conformal mapping. Among the aforementioneay shape is of great interest. The present study is then triggered
studies, the shape geometry of elastic inclusion problems canliyesuch a desire.
successfully treated up to an ellipse by using the conformal map-The magnification of stresses around the inhomogeneity em-
ping technique with additional restriction in the inclusion domaibedded in an infinite matrix under a remote uniform heat flux is of
to remedy the discontinuity to obtain one-to-one transformatiagreat importance in engineering design. The problem becomes
(Hwu and Yen[9]). It is known that the technique of conformalmore and more attractive and applicable when the inclusion is of
mapping is one of the most powerful methods for the solution @foncircular shape since the local stress could be significantly af-
boundary value problems for awkwardly shaped regions. Hoviected by the shape of inclusions. In the present work, the bound-
ever, due to the lack of a conformal mapping, which maps simury value problem of an inclusion of arbitrary shape in plane
thermoelasticity is considered. The boundary of the inclusion can
be arbitrary, that is characterized by a Fourier series expansion. As

o e momees ot s st Awica socery o Menioned I the last paragraph, the echnigue of conformal map-
MECHANICAL EN)(lBINEERpSpfor publication in the ASME GQURNAL OF APPLIED ME- ping I1s unable to solve the |_nclu5|on problem with nonelliptically
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octobeshaped regions. An approximate methodology based on the per-
2, 2000; final revision, June 5, 2001. Associate Editor: J. R. Barber. Discussion fuirbation techniquéGao [15) by introducing a small real quan-

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departi inti R ; i
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, arr?cﬁytthat denotes the deviation of the inclusion from that of a circle

will be accepted until four months after final publication of the paper itself in th&> adOptde in this study. Based on the principle of superposition,
ASME JOURNAL OF APPLIED MECHANICS. the solution of the present problem is composed of the reference
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and the perturbation terms that the reference term is the analytiliaéar thermal expansion coefficients. In the following derivations,
exact solution corresponding to the problem associated withttee stress-state notations are adopted in the Cartesian coordinates
circular inclusion. First-order solutions are derived in an explicds

form for nearly circular inclusions of arbitrary shape that are

viewed as being perturbed from a reference circular inclusion. 0= (7t 7yy);=2[¢{(2) + ¢ (2)], (5)
Two typical examples associated with elliptical and smooth po- _ B . _ " ,
lygonal inclusions are solved explicitly and discussed in detail. In 2= (1yy= ot 2 1) = 2[267(D) + Y (D)), ©)

order to verify the validness and efficiency of the present metiwvhere the®; andX; are known, respectively, as the hydrostatic

odology, the solutions associated with the hole problems, whielmd deviatoric of a stress state.

are reduced from the present results, are compared with the existAssume that there is no heat soufoe singularity being situ-

ing exact solutiongKattis [16]). ated in the inclusion, the temperature functions in the circular
inclusion and in the matrix, respectively, can be written as

2 Plane Thermoelasticity for Circular Inclusion Prob- %012 =G(x(2), for [F=a,, Q)
lem Jo2)(2)=0900(2) +T(5(2), for [z|=a,, (8)

Consider a circular inclusion of radiag existing in and being heregj(z) is the temperature function for a homogeneous infi-
perfectly bonded to an infinite matri¢Fig. 1). We denote the e oqjig andg(;,(z) are the perturbed functions caused by field

regions occupied by the |n_cIu5|on gnd the mgt'rleasandSz, ._perturbation due to the existence of the inclusion. From EDs.
respectively, throughout this paper; the quantities for the regloE d(2) with the thermal interface continuity conditior®; = Q,

of their own are denoted by the corresponding subscripts. In t dT,=T,, alongz=¢=a,e'’, the temperature functions are
regular procedure on solving the thermoelasticity problem, t 12 9 0= P

temperature function must be determined first and then for t %und as([18])

stress functions. For the two-dimensional heat conduction prob- , 2k,

lem, the resultant heat flo; and the temperaturg; are related 901)(2) =} j; 9oo(2),  for |z|<ay, )
to the temperature functiorgi’(z) as 2

e

and
Q;=—kj Im[g{(2)], 1 ok a2
T,=Reg/(2)], ) J0(2)(2) =Yoo 2) + ﬁgéo(f), for |z]=a,. (10)

where the notations Re and Im stand for the real part and imagi-gor solving the stress field of elastic inclusion problems, the

nary part of a complex value function, respectively, &nor the  yetermination of the forms of the stress functions must be prop-
heat conductivity. Regarding the formulations for thermal stress ly chosen such that both the displacements and resultant force

the two components of the displacements and traction force in g single-valued for any enclosed loop either in the matrix or in
Cartesian coordinates can be expressed in the following equatigRs inciusion field. For this consideration, the two stress functions,

([27): o) and (g, are now expressed as
XJ gj/(z)dz, ©) l/fo<j)(Z):f¢(j)(Z)+*/’3(])(2): (12)
Where_ the functiond ,;) and f, ;) must satisfy the following
=Y +iX;=¢i(2) +20](2) + ;(2), (4) equations[18]):
where u; is the shear modulus, and =(3—v;)/(1+v;), B; T T ,
=aqj forlthe plane stress andj:(3—4lvj), ,Bj:l(1+ Vj)]a/j folr Lt o) —2f 4) fwm]cj_ 21 B; C‘gj(t)dt' (13)
]

the plane strain with; being the Poisson’s ratios aig being the g
an

[Fo) 28400+ ], =0, (14)

with the notation[ ]Cj being the increment of a function in the

A /2// bracket when enclosing any contayyrin S;. The parts(ﬁg(j) and

wgm are two holomorphic functions in their corresponding field
S; that can be expressed in series form as

. B .
. bh(D= 2 NaZ™  Piu(2)= 2 Puz™  (15)
0 m=0 m=0
Iz}
Gh0(D=2 LaZ ™ (D=2 Muz ™ (16)
S m=0 m=0

where the coefficients in the above equations can be determined
s, from the interface continuity conditions.

‘ 3 Plane Thermoelasticity for Nearly Circular Inclu-
ix sion Problems

3.1 Temperature Field Induced by a Nearly Circular In-
Fig. 1 Circular inclusion in an infinite plane under remote heat clusion. Consider a nearly circular inclusion existing in an infi-
flow nite solid that the boundary of the inclusion is slightly different
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from a reference circle of radius, and the points along the in- LA Lal(0) 2=
terface between the matrix and inclusion can be expressed as [90(0)+90(O)11=0. (24)

z=r(0)e'’=[1+A(0)]ace'’, a7

where the small real quantit#( ) is obviously the perturbation
magnitude at the given positiof(Fig. 2). Denote the point on

Substituting Eq(20) into Eq.(21) and(22) and using Eq(23) and
(24), we obtain a set of equations as

K1A(£) £90(1)($) —kaA(£) E90(2) () +KiG;(1)(8) —kaGy2)(£)

the circumferencéz|=a, and? for the point on the actual inter- “KA i KA m kT
face, EQ.(17) can be equivalently rewritten as 1A(0) {001y () +K2A() {To(2)({) —KaGe1)(£)
T=[1+AD]L,  (=age", (18) | +ka9,(2)(0) =0, 25)
an

where{ and? are of the same polar coordinate arguménthe
temperature functiong; (2) for the nearly circular inclusion prob- A(£){9g)(£) = A(£){952)(£) +9(1)(£) = ez (0)

lems can be expressed in the perturbation form as follows: - - - -
T AL £90(1)(9) = A0 {90(2)() +9g(1)(£) = e 2)(£) =0.

(26)
whereg,;,(2) are the temperature functions of the circular mclu-QE(:e the reference temperature functi@gﬁ)(z) are obtained,

sion problem, say the reference temperature functions, al ) /
g.)(2) are the perturbation terms due to the reference circumfdfi perturbation terms of the temperature functighs(z) can be
ence at|z|=a, being perturbed byA(¢) as Eq.(17) indicated. etermined fro_n(25) an_d(26)_ by some ba§|c methods of splutlon,
Based on a first-order approximation, E49) at the interface can sych as analytical continuation, Cauchy integral, and_ series expan-
then be expressed as ' sion, etc. In the present study, the method of analytical continua-
tion is used which is much more powerful and allows boundary
9,’/(2)296<j)(2)+9é(j)(2) value problems to be solved with comparative ease.

=0o(j)(§) T ADEG0() (D) T9.(&),  1=1.2. (20) 3.2 Stress Field Induced by a Nearly Circular Inclusion
Since the resultant heat flux and the temperature are assumedhe two stress functions for the nearly circular inclusion problem
be continuous across the interface and according to the expresn be expressed as
sions in Eq.(1) and(2), the thermal continuity conditions lead to

9/ (2)=0¢;)(2) +9.;y(2), =12 for ze§j, (129)

?i(2)= ¢o(j)(2) + ¢.(y(2), (27)
[kg'(D—kg' (D=0, (21) i(2)= o)+ e (2), (28)
and where ¢oy(2) andiy;y(2) are the stress functions for the refer-
D~ T ence circular inclusion problem whilg,;,(z) and ;) (z) are
[9"(O)+9'(H]1=0, (22)  the perturbation terms due to the reference circlegjat a, being

where the symbo[f]i denotes for the function quantity jumpperturb_ed byA({). These stress functions at the interface can be
across the interface from the inclusion boundary to the matr@PProximately expressed as

boundary, i.e.,f,—f,. Similarly, the thermal continuity condi- e o _

tions for the reference temperature function can also be expressed b ()=o) () + A o) (D + s (£, (29)

as Ui = o) (D) + A Lo (D) + oy (0. (30)
[kgo(£) —kgg(£)13=0, (23)  Since both the traction and the displacements at the actual inter-

and face must be continuous and according to the expressiof® in

and(4), the interface continuity conditions lead to

(D) +Td D+ w(D]2=0, (31)

and
— k(D +Td' O+ 9D
)%

2
ZBQ(Z)} =0. (32)
1

For the reference circular inclusion problem, the interface conti-
nuity conditions can also be expressed as

[o(0)+ LoD+ ol £)12=0, (33)
and
— — ko )+ Lbo( O+ borgy ?
UL %(OZBgo({)} —0.  (34)
1

Differentiating (34) with respect to while noting thatZ= aé/ Ie

. yields
—ky(O+ oD ad[ep(0)+ wész ,
= 280a/
f/:/i . p 7 L2600
. . . . e . _ Z 20(§) ? ! 2
Fig. 2 Inclusion of arbitrary shape in an infinite plane under —2—{ +[2890(0)11 (35)
remote heat flow 1
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where By substituting the above Eq#44) and (45) into Egs.(25) and
] — (26) and putting all the terms of positive or zero order/ain the
20(0) = (Tyy= Tux T 2 Txy)o=2[ {G(£) + #ho($)]. (36)  one side and the terms of negative orde of the other side, one
By substituting Eqs(29) and (30) into (31) and (32) and making ©@n .obtai.n a system of equations through the use of analytical
use of Eqs(33), (34), and(35), we obtain a system of equationscontinuation method as
as

Bu( O~ B D+ LB D)~ (DL D+ I D)~ oo (D) 2 [(K10= Ko@) Cop ke Cryi 1+ (Ko =Ky @)C g

= IADEow() =Zo (D], BN BTy Ay "M kGl (D) T keUl (D=0, (46)
and
— k1o (D) + LBl (O F o0 2, [(0=a)Cr-1+BCr 1= (@=®)C 1+ BCymlag "¢"
e
M1
— +q/ -q. =0. 47
. Kebue(D= LD~ b (O 9e( )~ B (4) “7)
o Solving (46) and (47) for the temperature perturbation functions
9..y(2) yields
— 2008 2o@(0) W
= gA( g) e o ~ - 2k2 D —
9l0= 2 e BCrmtCorm|ag 2", zeS,
+2619.(1)(£) —2B829:(2)( D). (38) m=0 "1 12 (48)
The stress perturbation functiong, ;,(z) and #,(;,(z) can be
immediately determined froni37) and (38) once the reference * Ko Ki
stress functions and the temperature perturbation functions are g/, (z)= E [— k2+k1 BC_1_ntCiim)+B(Ci_p
obtained. Before doing this, the function forms of the stress per- m=1 2T
turbation functions must be defined first that will make the deri-
vation more obvious and easier. The typical solving procedure +C_iim @Mz ™ zesS,. (49)
will be illustrated in the following section.

Integration of(48) and(49) with respect taz gives

B(Cnt+C_) a5 Mz, zeS,

(50)

4 Elastic Inclusion of Arbitrary Shape Under Remote 3 - -2k,
Uniform Heat Flux 9:(0(2)= 2, m(k;+k»)

m=1

4.1 Temperature Field. Consider an elastic inclusion of ar-
bitrary shape embedded in an infinite matrix under remote uni-
form heat flux(Fig. 2). The boundary of the inclusion considered
in this work is represented by a Fourier series expansion such that
the radius perturbation magnitué€?) in (18) along the inclusion

(2)=17,lo z+i ﬂﬁ(c +Carm)
O:(2)(2)= v, 109 “ Mk, ky) —2-mTCoim

boundary can be expressedwas +/3(C—m+c_m) aé*mz’m, z¢S, (51)
g m
A= 2 Cp P (39 where
m=—co 0
The temperature function for an infinite solid under a uniform heat ky—ky — — — | 5
flux is given by Ye=| mﬁ(c—ﬁ Co)+B(Cot+Co)lag.  (52)
god2) =7 "z, (40) 42 Thermal Stress Field. According to the obtained refer-

where 7 is the temperature gradient andthe angle of the heat €nce temperature functions given in E¢&l) and(42), the refer-
flux with respect to the positive real axis. By substituting &g) €nce stress functions are assumed to be
into (9) and(10), the reference temperature functions are found as

, boj)(2)=Bo(j) INZ+ g ;(2), (53)
9o1)(2)=wz, for ze$S,, (42)
1 Yoy (2)=Coyj) IN 2+ 475 ;(2) (54)
Yo2)(2)=az+Bag, for ze$, (42)  where the four constanByj, andCoj can be found according to
h Egs. (13) and (14) and the coefficients of the four holomorphic
where functions(ﬁ{)‘(j) and lpg(j)(z) can be determined from the interface
N ko—ky 2k, i continuity conditions. The final results of the reference stress
a=T1e" ", B= m € w= Kok, e, (43) functions are obtained 446]
Applying (39), (41), and(42) at the interface gives yy )
2)=— ———(Biw— Bra)Z°, 55
- ¢0(1)( ) M2K1+,U«1('81 Bra) (55)
A v = ai ™Cp_ 1™, 44
(D205 0= 2 way "Cp (44) Jorw (=0, (56)
" “ 1-mem _ ZMZ'BZ 2
A(D) {902y (D) = E (aCpn-1—BCmi1)ag "¢ (45) Pbo2)(2)=— 1ir, paginz, (57)
m=—wx
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Mzﬁz = - 2 —
27
o(2)(2)= ﬂao| b JrMl(ﬁlw Boat) m2:1 ™ N(m— . —Mmag " Iu—z(Az—A?,)ao "Crn-2
ZBZB 4 _2
e e ( e e
Similar to the expressions of the reference stress functions as in- - "
dicated in Eqs(53) and(54), the stress perturbation functions can (m— 2) az2m2my 2 4,31k2ﬁ
also be assumed as “s owo Le(m-280 1 m(ky+kp) kz)
be()(2)=Bsy IN 2+ ¢7)(2), (59) — New . Bo 5,
+C_mag MM+ Ry, Be ag = (73)
si)(2)=Cy(jyInz+ 1/’:(])(2)‘ (60) " M1 M2
where the holomorphic functionﬁl‘(j) and zp;‘(j) are expressed in and
Laurent’s series form as "
E [Lom— (M+2)Ngms 2@ 2" Pymad™ ™
®r1)(2 E NomZ™  ¥ia)(2 2 Pemz™  (61) m=1
. - o - . + 2 [2(A2=Ag)C ot 2(As—A)C_y]
$0(D=2 LamZ ™ Wi2)(D= 2 Mymz ™ (62) =1
m=0 m=0 2+me—m
. ag ¢ "=0 (74)
Making use of Eqs(50), (51), (59), and (60), the constants ap-
pearing in the logarithmic terms in Eq&9) and(60) are obtained  ~ Ky (m+2) 1
according to Eqs(13) and(14) as ——Lym— Ne(ms2@g 2" —Pymag™ | ™
m=1 M2 M1
Bs(l):O’ (63) w
2P, | (Ka—ky)—
2128 - CpmtC
Buo= = i1 Y (64) 24 m Ll (oo Can
_ S [2 —
Cow=0. (69) +B(C_+C) [237 ™+ S {—(Az—Ars)c_z_m
m=1 [ M2
C _2M2327 (66)
e(2)— e" A A
rotl +2(—3— —1>c,m atmym=0. (75)
With the help of Egs.(36), (39 and (55—(58), the terms M2 M1

AT o;(D) in Egs. (37) and (38) can be expanded in seriessolving the above four equations for the unknow$ry » P »

form as

ADTn(D)= X 2A85 "Cpd™, (67)

IADZ002)(0)= mZE_m 2[(A;—A3)Cry2+AgCrrlag ™™,

(68)
in which
21 2k, in.

Al__M2K1+M1 ki +kp Pa)paTe ™ (69)

A= 21 2k, _ 4B, [ka—k; o i\

2 pokyt g \kitky T2 14k, kot kg MaTe
(70)

2 k,—k .

Ag=— Bz (Ka—ky) in (71)

1+ K2 (k2+ kl) MZTe

Similar to the previous approach, substitution(86), (51), (59),
(60), (67), and(68) into (37) and(38) gives the following two sets
of equations as

2_ [Ne(m =M. mag °"—2(A—Az)ad "Cp_»

—2(A3—A)a3 "Cpl ™+ 23 (M=2)Ly(m2)
“
Xag 2™ 24N, 1) — By a)ag 20°=0 (72)
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Lem, andM, ., yields

N, = | 2(ptp— 1) As2,C
D7 (1= o) + paky (2~ 11)As80Cs
481 10K Bag - }
—F—FFFF F  (C,+C_y) |, 76
(k1+k2) ( 1 1) ( )
2(pa— p1) 72—
=2 P A g2
(M g+ pgky 0 m
4B oKy B -m
—a C,h,tC_ m=2
(p1+ pory) (kg +ky) m™0 ( m)
(77)
72(#«2_#’«1) 24+m
S S e, [Co-m—AsC_plag
2Bop1 o (kp—kq)—
— C_ +C
M(pot+ pa2) [ (Katky) AC-z-m* Carm)
+B(C_n+Cp)|a2™, m=1 (78)
Pom=Lemao 2"+ (M+2)N,(m+ 2,23
+2[(A;=A3)C 5 mt(Ag=A))C_plag ™, m=1
(79)
Ms(l):(Ne(1)+Ns(l))a0+2[(Al As) — (A Az)C —1]?-8 )
80
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A3)Colag
(81)

Ms(z):Ns(z)ag_Bs(z)a0+2[(Al A3) (AZ

Mo(m=Nema@g"+(M=2)Lym-2a5+2[(A;—A3)Cpy

2+m

—(A;=Ag)Cp_rlad"™, (82)
The expression$59)—(66) and (76)—(82) provide the first-order

m=3.

analytical solution for the inclusion problem of arbitrary shape in7¢gj)=

an entire plane under a remote uniform heat flux.

5 Examples

5.1 Elliptical Inclusion Problem. We first consider the el-
liptical inclusion problem of which the radius perturbation mag-

nitude A({) can be expressed as
2
o

z (83)

PG
A(()_E(a—g+

. . . . W
wheree is a relatively small quantity as compared to unity. The

inclusion boundary represented k§3) is an ellipse with semi-
axes beingay(1+¢) anday(1—¢). Comparing Eq(83) to Eq.
(39), the coefficient,, are then given by

el2, m=-22,

0, m#-22. (84)

m=

Applying (84) into (48) and (49), we can have the temperature

functions as

, . 28k23 s 85
gs(l)(z)_ - k1+ k2 Z, Z€oq, ( )

and
’ _ k 2 —1 4_-3 86
gs(Z)(Z)_ k +k Ba BaOZ ’ ZESZ- ( )
After having the constant8,), N,m , and
M. m from the general expressions of on§48 (76) (82) the

four stress function;(z) and ;(z) can be determined as

_| MMz _ 2
h1(2)= #2K1+#1('Blw Boa)+ N |2z (87)
§1(2) =P, 22, (88)
for ze S;, and
21287 _
ba(2)= _mﬁag+58(2) Inz+L, 0z 2, (89)
Po(2)= L'Bzﬁa +B, . |Inz— &(,8 w— Bra)as
z (1+k,) 7707 7@ MoKt g 1@ P2%
2u2; _
e BaO+MF(2> 2+ M2 (90)
for ze S,, where
—u)A+2 Ko(kq+ky) 2
Ng(z)zs (po—p1)Ay 1p2B1BKa(Kyt+Ky) } (91)
MoKyt g
— ) Ayt
Lg(2):_8 (2= p1)Ag Mlﬂzﬁzﬁ} 3, 92)
M1K2F o
PS(Z)—Ls(z)ao +8( Al) (93)
M,2)=Ng2)—Bo2)@0 24 g(A1—Ag)al, (94)
M, 4= 2L, 25— (A~ Ag)as, (95)
2128 kz_kl)
Be2=27 7 ik, (96)

Journal of Applied Mechanics

It is seen that fron{87) and(88) the stresses inside the elliptic
inclusion are always linear functions of the coordinatghich is
different from the result of uniform stresses existing in the inclu-
sion of the corresponding isothermal elastic problem. The interfa-
cial stresses along the inclusion boundary can be performed by
using field solutions of the matrix €2) or inclusion {=1) as

d% |2
e[¢1<g>+¢1<g> [w);’(ow(o]( g +|E) }
@7)
0%,
o) = e{¢,<4 +¢,<£>+[z¢;’(§>+w,<g>]( i +.E) ]
(98)

ax dx,\?
_2+|_l) ]7
ds

racr= | 41D+ 01 B2+ D]
(99)

here

Pa_1d4_ 1 sne 26 sin 60— 2¢ sin 20 cosé

ds md— m(—sm — & C0S 20 sin— 2¢ sin 26 cosb),
(100)

M _ LI 2 26 sin 2

E_md_ |J|(cose+scos cosf—2¢e sin 20 sin §),
(101)

with

J=\[r"(0)]1?+r?=(—2¢ sin 20)?>+ (1+& cos 20).

(102)

When the inclusion is assumed to be an insulated and traction-
free hole, the hoop stress along the hole boundary can be obtained
from (98) by lettingk;=0 andu;=0 as

7,y=Re{—48a5( *+e(250+ 4825, 1~ 65a5; %)},

[=age'’, (103)
where
] i
4 —]
2 —]
(=3
s o
) _
o
> 0
~
o~
e -
[
&
[ %Y
-2 —
-4 —|
—&—  Perturbation Method
| —@— Exact Solution Provided by Kattis [16]
‘6 T T | T T [ T T ‘ T T ‘ T T ] T T ‘ T T ‘ T T ‘
0 45 90 135 180 225 270 315 360

O(degree)

Fig. 3 Dimensionless hoop stress for the elliptical hole prob-
lem with A=90 deg
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—&S—  Perturbation Method
— —@— Exact Solution Provided by Kattis [16]

-6 L L L T N B B B
0 45 90 138 180 225 270 315 360
O(degree)
Fig. 4 Dimensionless hoop stress for the quadrilateral hole problem with A
=90deg
- i
4 —
2_

: i

Trme /qaZIHZaO

-2 —
4 —
—&-— Perturbation Method
- —@— Exact Solution Provided by Kattis [16]
-6 II[II|II|NI|II|II|II|II]
0 45 90 135 180 225 270 315 360
O(degree)
Fig. 5 Dimensionless hoop stress for the hexagonal hole problem with A
=90deg
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2P iy 2k;8 22— npn-1

= 1tx, (104) 01(z2)=wz—¢ Kk, 20 , (108)
Comparison of the dimensionless hoop stress between the present Haflo
result (103 and that derived by Kattig16] displayed in Fig. 3 $1(2)=— n (Brw— Bra)Z?+ Nemz",  (109)
shows that a good accuracy of the present first-order perturbation Mok
solution is achieved. Y1(2) =P, 22" 24P, 2", (110)

5.2 Smooth Polygonal Inclusion Problems. Next, we con- for ze S, and
sider polygonal inclusion problems of which the radius perturba-

tion magnitudeA(¢) can be given b ki—ky—
g (f) g y gé(z)=az+,8a§z‘l—s 1 Zlgagzl—n_ﬂa8+22—n—l)’
e({" ag ki+k
AD=5|=w+ /], n=3, (105) (111)
2\ay ¢ )
where ba(2)=— 1;12522 Baginz+L, 22 " P+L,mz ",
1 (112)
€= 1m? (106)
_ 2paBa— 2107 | _H1H2 .
These inclusions are of practical interest since they provide good Pa(2)= 1+x, Baglnz oK1t gy (Bro—Baa)
approximations to regular polygonal inclusions. For example, the
inclusion shape witm=3 resembles a triangley=4 for quad- _ 2#232,3 724 M 7 M 7~ (n+2)
rangle,n=>5 for pentagon, and so forth. Although the polygonal 1+x, 7|70 &(n) s(n+2) '

elastic inclusion problems have been studied by some authors

(see

, e.g., R{i12] and Gad[15]), the corresponding thermoplas- (113)

ticity problems are not available in the literature. According to Edor ze S,, where
(105, the coefficient,,, appearing in(39) are given by

Appl

the temperature and stress functions for inclusion and matrix
fields, respectively, can be immediately determined as follows:

(o— )AL +4K (ki+ky)"tn7t
e/2, m=-—n,n, N M2— pH1)A 212 B1B(Ky ks g2

0
= _ (107) M1t poKy
0, m#-—n,n. (114)

Cm

ing (107 to the general expressions derived in Section 4, _
ying (107 g o (2= p1)Ag+2n" a8, a2+n

, 115
Kot po 0 (115)

La(n): — &

(Mz_ﬂl)(Az_A_s)_z(Z_ )~ i maBaBk—ky) (kg ko) 7

Lyn_o=¢ ap, 116
(n=2) Kopyt+ po 0 (116)
I
M (=N (m@2"+ (N—2)L 283+ s(A;—Ag)al™™, 7,,=Re{— 4585 T+ s[25a3 """+ (8—4n)sag "
117
(117) +(2—4n)sal 2 ). (124)
_ 2 v +4
Men+2)=NLomas—e(A,—~Ag)ag ", (118) Comparisons of the dimensionless hoop stress between the present
— — — results(124) and the exact solutions derived by Kafti$] for the
Pom=Lemao " te(Az—Ap]ag ", (119)  case of a quadrilateral hole=4, and a hexagonal hole=6, are
—_— i 5 _ i shown in Figs. 4 and 5, respectively. The agreement between these
Pen-20=Len-220 +nN;magte(Az—Az)ag . two results shows that our proposed methodology is satisfactory.
(120)

6 Conclusion

Similar to the previous approach for the elliptical inclusion

prob

lem, the interfacial stresses can also be expressed®frm The general perturbation solutions for the two-dimensional

(99) by replacing(100—(102 with thermoelastic problem with a nearly circular elastic inclusion of

arbitrary shape existing in an infinite matrix are provided. The

ax; 1.dx, 1 ) ) ) boundary of the inclusion is characterized by a Fourier series ex-
ds [ de I (—sinf—g cosndsinf—ne sinnf cosb),  pansion that allows us to obtain an analytical solution for bound-
(121) ary value problems of an inclusion of arbitrary shape. Based on

the method of analytical continuation and the boundary perturba-

dx, 1 dx, 1 _ _ yion techni_que, f_irst-order _perturbation sol_utions are given explic-
s 9] do = m(COSG‘Fa cosné cosf—ne sinnd sin6), itly for an inclusion of arbitrary shape. It is should be noted that

(122) higher-order perturbation solutions can also found by the present
approach without difficulty. Besides, the corresponding inclusion
I=\[r'(0)]%+r2=\(—ensinn6)?+(1+e cosnb)>. proble_m under a point h_eat source with the st_rerq;tbcated at
(123) the pointz=z, in the matrix can also be treated if one replaces the
homogeneous solution in EI0) with —g/27k, In(z—2zy). As an

For the special case of an insulated and traction-free hole pragpplication, two typical examples associated with elliptical and

lem,

the hoop stress along the polygonal hole boundary can $reooth polygonal elastic inclusions are solved completely and

obtained from(98) by lettingk;=0 andu,;=0 as discussed in detail. Due to the intrinsic deficiency of the technique
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A Yavarl On Fractal Cracks in Micropolar
Assoc. Mem. ASME Elastic SOIids

S. Sarkani
Professor In this paper we review the fracture mechanics of smooth cracks in micropolar (Cosserat)
elastic solids. Griffith’s fracture theory is generalized for cracks in micropolar solids and
E.T. MOV&I‘, Jr. shown to have two possible forms. The effect of fractality of fracture surfaces on the
Adjunct Associate Professor powers of stress and couple-stress singularity is studied. We obtain the orders of stress
and couple-stress singularities at the tip of a fractal crack in a micropolar solid using
School of Engineering and Applied Science, dimensional analysis and an asymptotic method that we call “method of crack-effect
The George Washington University, zone.” It is shown that orders of stress and couple-stress singularities are equal to the
Washington, DC 20052 order of stress singularity at the tip of the same fractal crack in a classical solid.
[DOI: 10.1115/1.1409258
1 Introduction physical meaning. Crack growth in compression was explained by

. Mosolov and Borodich18], Mosolov[19], and Balankin4].
Fractal geometry, which has been argued to be a better geOMG,, /i [15] and Yavari et al[14] introduced a new mode of

etry for modeling natural objects than “Euclld%an geometry, W&3cture in fractal fracture mechanics and called it “the fourth
introduced by Mandelbrc[tl,_z]. The term fra“ctal was ,?O'nEd by mode” or “the axial mode.” They pointed out that the existence of
Mandelbrot_[Z] fm”? th? Latin verl:{rangere to break,_ and the" this new mode of fracture could make some single-mode prob-
corresponding adjectiveractus “fragmented and irregular. lems of classical fracture mechanics, mixed-mode problems in

Fractal geometry _has found applications in many fields of SCienﬁ%ctaI fracture mechanics. Later, Yavari et 6] showed that
and engineering in recent years. So far fractal geometry’s majr ;

D . . ) ere are actually three new fractal modes. Xi6] studied crack
applications to solid mechanics problems are in contact mecha nching using a fractal model. Xie and Sanderfdt] ex-
and fracture mechanics. Fractal fracture mechanics is a noncla T%f"lned a paradox in dynamic frac'ture mechanics using their frac-
cal fracture mechanics in which cracks are assumed to be fra 1g

) . model. BorodicH22,23 realized that Griffith’s criterion must
curves(surfaces (Cherepanov et a[3], Balankin[4]). In classi- o mogified for fractal cracks. He showed that in the modified
cal fracture mechanics it is assumed that cracks are rectifiae

. L Vﬁerion, the specific surface energy must be defined per unit of a
curves(surface i.e., curvegsurfacegwith finite lengthsareas.  f50ta| measurénot length or areeof fractal crack growth. Yavari
Cracks are modeled by smooth curvesrfaces with probably & 124] generalized Barenblatt's cohesive fracture theory and devel-
finite number of kinks. These simplifying assumptions make fra%‘ped a fractal cohesive fracture theory.
ture mechanics problems mathematically tractable. To our best knowledge, there is no investigation into fractal
Mandelbort et al[5] experimentally showed that fracture sur- acks in micropolatCosseratsolids. This paper aims to explore
faces of steel are fractals. Since that pioneering work many othgjme interesting problems of micropolar fractal fracture mechan-
experimental studies have been ddfier example, Brown and jcs. |n Section 2, micropolar elasticity is reviewed and its basic
Scholz[6]; Power and Tullig7]; Saouma et al8]; Saouma and ¢oncepts and definitions are explained. Section 3 discusses frac-
Barton[9]; Wong et al.[10]). Now we know that cracks can beyre mechanics of rectilinear cracks in micropolar solids. The ef-
modeled by fractals in a widéut finite) range of length scales. A fects of couple-stresses in fracture mechanics are reviewed and
number of theoretical studies have been conducted to date. Mgyiffith's criterion is generalized for both smooth and fractal
solov[11] and Gol'dshten and Mosolo\[12,13 studied the sin- cracks in micropolar solids in Section 4. Section 5 studies self-
gularity of stresses at the tip of a mode | self-similar fractal craciimilar and self-affine fractal cracks in micropolar solids. Using
showing that the power of stress singularity is a linear function @fimensional analysis and the method of crack-effect zone, it is
fractal dimension of the crack. Yavari et 4ll4] calculated the shown that stresses and couple-stresses at the tip of a fractal crack
orders of stress Singularity for mode I, 11, and Il fractal CraCkSn a microp0|ar solid have equa| orders of singu|arity. The Appen_
Yavari [15], Yavari et al.[16], and Balankin[4] studied HRR dix presents some basic definitions and techniques of fractal ge-
singularity for self-similar and self-affine fractal cracks. ometry that are directly relevant to our investigation.
Mosolov [17] and Balankin[4] investigated the path indepen-
dence ofJ-integral for fractal cracks and modified tldentegral
for fractal cracks. They argued that the modifigthtegrals are . L
path-independent. This problem was later discussed in Yavari Micropolar Elasticity
et al. [16]. They mentioned that a fractakintegral should be  This section presents a brief introduction to generalized con-
equal to the potential energy release per unit of a fractal measufguum theories and their history. Here we discuss only those as-
They explained that the modifieHintegrals defined by Mosolov pects of micropolar elasticity theory that are necessary for our
and by Balankin are only locally path-independent and have nevestigation of fractal cracks in a micropolar solid. A literature
review for fracture mechanics of rectilinear cracks in micropolar
solids will be given in the next section.
c ifCurr_enltlyt_ltSrtadufa;_e I;eslearchPAssijstant,Ci\rgiligtse Aeronautical Laboratories|n classical continuum mechanics, at each point only transla-
allfornia Institute or lechnology, Pasadena, . : H— H HE
Contributed by the Applied lglilechanics Division o AMERICAN SOCIETY OF tional degrees-Of_Treedon.]i (I N 1’2’3) are con5|(.jered. and it is
MECHANICAL ENGINEERSfor publication in the ASME GURNAL OFAPPLIEDME-  assumed that the interaction between two material points along an
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 5.arbitrary surfaceS is completely described by a stress vector
200 el rdon i L ol St .3, e, Dicsslngfined o Thess assumptons lead 1 & mathemticaly conss
of I\/FI)e(?hanical Engineering, University of Hbuston, Houston, > 77204-'479’2), arr?gﬂt theory pf contlngum mechan|c§. Experience has shown_that
will be accepted until four months after final publication of the paper itself in Enost analytical solutions obtained in the framework of classical
ASME JOURNAL OF APPLIED MECHANICS. continuum mechanics agree very well with the experimental re-
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sults. To data all engineering designs are based on the use of 1
classical continuum mechanics and sometimes even with some ri=§8i,—kuk,,— 1)
more simplifying assumptions.

The curiosity of some distinguished researchers led them wheree;; is the permutation symbol. Macrostraieg and mi-
question the above-mentioned hypotheses and to develop genetistrainsg;; are defined as
ized continuum theories. It was clear for them that considering

only translational degrees-of-freedom might not be enough for eijzi(ui Uy (2a)
continua with microstructurésee[25—37)). 2" ’
In the original Cosserat brothers’ formulatigf26]), rotations £ =65+ e (T— bi). (2b)

¢; (i=1,2,3) were considered to be independent of displacement
componentsy; (i=1,2,3). However, later most analytical solu-Curvature tensor is defined by
tions were reported for a special case that is now known as o

; Xij ¢],| - (3)
couple-stress theory or constrained Cosserat theory. In couple- ] ) )
stress theory, microrotations are assumed to be equal to macrord®S & consequence of the assumption that each point has six
tations, i.e.g; = 1/2s;j,uy ; . This is the theory that was developeddegrees-of-freedom, in a mlcropollar continuum both stresses and
independently by Griol[28], by Aero and Kuvshinskif31], and couple-stresses exist and Cauchy’s theorem holds for them, i.e.,
by Mindlin and Tierster{32]. Eringen and his co-workers elabo- o =0 (4a)
rately studied the theory of Cosserat continua and again assumed b
that microrotations are independent of displacement components. m; = m;;n; (4b)

Erllrgdep [36,37 Ir enamed the r(]jossercz:at ccégtlnuurg. theory dar\gzhereai andm; are components of stress and couple-stress vec-
called it micropolar continuum theory. Cowi88—40 discovered (55 respectivelyp; is the unit normal vector to an arbitrary sur-
a continuous transition from couple-stress theory to mlcropolg:{ces and o;; and my; are respective stress and couple-stress

theory by introducing a coupling numbét (0=<N=1), where (ansors. Stress and couple-stress tensors are in general asymmet-
N=1 corresponds to the couple-stress thedly;0 corresponds (¢, The equilibrium equations are

to the classical theory, and between zero and one {ON<1)

corresponds to the micropolar theory. It is known that in couple- aj;,;=0 (5

stress theory of elasticity two new constants appear and one of M+ o =0 (50)

them,| has the dimension of length and is called the characteristic T T Sk

length. On the other hand, in micropolar elasticity there are fofor a centrosymmetric isotropic micropolar material the stress-

new material constants and two of thelpandl, have dimen- strain relations are

sions of length and are called characteristic lengths in torsion and

bending, regpectively. This means that in gene%alized continuum 7ij = Nedij + (2pF K)&j F wesiji( e i) (62)

theories there is at least one internal length scale and therefore mjj = ady i+ Bdi i+ vP;,i (6b)

these theories should be able to analytically predict size effects.h reX and « are the classical Lameonstants and nd

Several authors investigated the effects of couple-stresses\'vine €A andu are | € classica a_rr::ohs?”s a d,g v @ )

different problems of solid mechanics such as stress concentratfofi' ¢ "EW micropoiar constants with the following dimensions:

in the presence of holes and inclusions and the change of size M F

effect in rigidity of different structural membersee[41-62). [a]=[Bl=[y]=F=1 and [«]==z=13 (7

Recently, there have been some investigations into strain gradient

plasticity (see[63] and references thergirThese theories seem towhereF, M, andL are dimensions of force, moment, and length,

be promising in design of very small structures. respectively. The strain energy density has the following form:
As was mentioned at the beginning of this section, generalized 1

continuum theories attracted theoreticians because of their beauty= z(oijsij +myj i) = E[)\ekkemm+(2,u+ K)€i; €]

To date these theories have not been applied to practical problems.

Here we have an example of a field in which experimental studies 1

are far behind the theory. There are several experimental investi- +k(rg— ) (re—dy) + E(a¢k,k¢m,m
gations into the mechanical properties of micropolar elastic mate-

rials. What we have at this time are just some ranges of these + B b it vdi b)) (8)

material constantéSchijve[64] and Lakeqd60]). So far we have
only some qualitative sense of the influences of couple stressé . .
We are hopeful that future advances in experimental mechan[@?anmgs([Sg])'

will make these elegant theories applicable to real engineering (2u+ k)(3\+2u+ «) 2u+ K A

problems. - . . . - A+2utr 2 ' VT n+2ut«k
It is worth mentioning that there is a recent interest in general-

tge following technical elastic constants have clearer physical

. ) - . . 9a
ized continuum theories because of the superiority they have in (%)
localization analyses. These studies are beyond the scope of this Bty y
section and will not be mentioned here. Now we present the basic l= =N (9b)
il n . . 2putx 2Q2p+x)

concepts, definitions, and balance equations of the theory of mi-
cropolar elasticity. Here we mainly follow Ering¢B87]. K B+y

In a continuous medium with microstructure each material ele- N= 20t 1)’ = PRI (9)

ment contains several micromaterial elements. In micropolar con-

tinuum mechanics only microrotations are considered for micrthereE, G, », I, I, N, and¢ are Young's modulus, Poisson’s
elements. Therefore, for each material point, in addition to tHatio, the characteristic length in torsion, the characteristic length
three displacements, three microrotations are considered. Microtdending, coupling number, and polar ratio, respectively. These
tations are assumed to be different from macrorotations. Displagé@nstants have the following dimensions:

ment components are denoted oy, microrotations byg;, and [E]=[G]=FL 2 [v]=1
macrorotations by; . Macrorotations have the following relations '
with displacements: [I=[lp]=L (20)
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[N]=[¢]=1. | " . A "

. ) o ) Ki=f|=,v|]oc"Va and K;=f| =,v|o \/5 (13)
It is seen that two internal characteristic lengths exist. Therefore, a a

this theory is capable of analytically predicting size effects. It i

h tionina that th h teristic lenath . hereK, and R| are stress- and couple-stress intensity factors,
worth mentioning that these charactenistic 1engins appear In 38 ,ss0n's ratiol is the characteristic length of the couple-stress

stress field solutions even for force control loading Cond't'onﬁnaterial and 2 is the crack length. Later Sih and Liebowj6s]

Therefore, in dimensional ?“a'ys's formulations these Charaderl‘éﬂnd the asymptotic expressions of the displacement and rotation
tic lengths must be taken into account. components as shown below:

. . . Kyv2r 0 30
3 Fracture Mechanics of Smooth Cracks in Micropo- u(r,0)= i 3(1-2v)cos=—(7—6v)cos—|+O(r)
) 8u 2 2

lar Solids

In this section, fracture mechanics of smooth cracks in a mi- K Var 0 .30
cropolar solid is reviewed. Here, the effects of couple-stresses onue(r‘g)_ 8u @ ZV)S'nE +(7 6V)Sm7 +0O(r)
the stress distribution around the tip of a smooth crack are dis- (14)
cussed. In 1960s and 1970s when generalized continuum theories .
were rediscovered and elaborately developed, several researchers g) = K, Var 0 40
became interested in examining the influence of couple-stresses in wy(1,0)= 8/1'|2 asin 2 (r).

problems in which classical theory predicts infinite stresses. One . . .
such problem with great practical importance was the stress digr @ crack in a Cosserat continuum, strain energy release may be
tribution near the tip of a smooth crack. It was known that stressgdlculated as

and strains around the tip of a crack are unbounded and have an 1 (éa

r~ Y2 singularity. Researchers were hopeful not to see this patho- G= lim gj [oyy(da—E0)uy (€, m)

logical problem in higher-order continuum theories. Unfortu- 8a—0 0

nately, higher-order continuum theories could not solve this patho- +m,( 8a—£0)w,(£,m)]dE. (15)

logical problem; both stresses and couple-stresses were observed

to be unbounded at the crack tip. There is a limited number bfsing the above formula, Sih and Liebowjta6] found the strain

investigations in micropolar fracture mechanics, which will benergy release rate.

reviewed in this section. 1 (a2
The first investigation into fracture mechanics of smooth cracks (1-v)(3—2v)K2+ _(_) K?

in Cosserat continua was performed by Sternberg and 1&Hi 161\ |

They solved the problem of an infinite two-dimensional plane- there are some other interesting investigations into fracture

strain linear couple-stress medium with a finite crack under a Ujiechanics of cracks in micropolar solitee[67-73). Now it is

form tensile stress state perpendicular to the crack axis at infinigh, own that the classical theory underestimates the valég ahd

They showed that both stresses and couple-stresses havé’an gyerestimates the energy release @te

singularity at the crack tip. They observed that couple-stressesanother interesting investigation into micropolar fracture me-

only change the angular variation of stresses around the crack #Ranics was conducted by Atkinson and Leppingftd4]. They

the form of the radial variation of stresses remains unchangghalyzed two problems1) a semi-infinite crack under an internal

They found the following asymptotic expressions for stresses agfless acting on the crack faces d@yla finite crack in an infinite

(16)

G o
2

couple-stresses: solid under a uniform stress at infinity. They solved the second
K 0 1 30 problem only for cases in whidia is very small (/a< 1)._They
Oul(1,0)=—(1—2v) —L | cos=— = sin#sin—| +0(r° showed that both stresses and couple-stresses at the tip of a crack
Jar 2 2 2 in a couple-stress or micropolar medium have ai? singularity.

(11a) They also demonstrated that the angular variations of stresses and
couple-stresses in couple-stress and micropolar continua are a
aol(r,0)= ﬁ[ Iittlt_a different_ but have a similar form. Atkinson aqd Leppington
yyioe Nen defined thel-integral for both couple-stress and micropolar theo-
ries and showed thal-integral is path-independent. Recently,
+0(r°% (11b) Lubarda and Markenscoff75] studied some conservation inte-
grals for linear couple-stress elasticity.

3-2 b1 1-2v)sin@si 36
(3— V)COSE_E( —2v)sin S|n7

K .61
ny(rve):_— 4(1_V)S|n§+ 5(1—21/)

Jar

_ 30
Xsing 0057

4 Micropolar Griffith’s Criterion

For finding the orders of stress and couple-stress singularity at
+0(r% (11c) the tip of a fractal crack, we utilize an energy approach. The
fractal crack is in equilibrium and hence the virtual work of all
forces in a virtual displacement, which is an infinitesimal crack

— K|l 3¢ 0 growth, is zero. For a cracked body, the principle of virtual work
oplr.0)==(1=2v) J2ri2 singeos7r|+OT) () st be modified to take into account the work done in a crack
propagation and strain energy release due to a crack growth. Grif-
and fith’s [76,77] criterion is actually a modified energy balance for
K, P cracked bodies. In this sect_ion we generalized Griffith’s theory for
m,,(r,0)=— \/? 5 sinE +0(r9 (12a) smooth and fractal cracks in micropolar solids.
r
R 4.1 Griffith’s Theory for a Smooth Crack in a Micropolar
K, |a 0 0 Solid. When a crack propagates, new free surfaces are created.
myAr,0)= T2 cos5|+0(r%) (120)  For creating these new free surfaces some amount of surface en-

ergy is needed to overcome the cohesive forces. This amount of
whereo,y, oy, 0y, oy are(force-) stresses anth,, andm,, energy is provided by an equal amount of strain energy release.
are couple-stresses and This is Griffith’s criterion[76,77], which was originally stated for
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Crack faces

(b)

Fig. 1 Mechanism of crack propagation in a micropolar continuum: (a) crack-tip particles withstand rotation and
separation, (b) the first step in crack propagation—crack-tip particles rotate with respect to each other, and (c)
the second step in crack propagation—crack-tip particles move apart and neighboring particles become the next
crack-tip particles

a rectilinear crack in a classical continuum. Moso[d\Z] used Griffith’s criterion for a crack in a micropolar solid may be

this criterion for fractal cracks assuming that the specific surfaséated in two different forms, depending on whether the effects of
energy per unit length remains unchanged and only the lengthstfesses and couple-stresses are considered uncoupled or coupled.
the crack increases in the case of a fractal crack. Later, Borodich . el L .
[22,23 noticed that Griffith’s criterion must be modified and in_ () Uncoupled Micropolar Griffith's Criterion. This form of
the modified criterion the specific surface energy must be defin d"ff'th S criterion states that a cra_ck_ propagates by an lamﬁant
per unit of a fractal measure. To our best knowledge, there is d"e following conditions are satisfied simultaneously:
discussion on Giriffith’s criterion for cracks in micropolar solids.

o __ u
This theory can be easily generalized for smooth and fractal dUg=dUs2ty,0a (1%)
cracks in a micropolar solid, as we show below. M b
In a micropolar continuum each material point can rotate and 0Ug=06Ug=2ty,éa (1%0)

translate independently. Now suppose that there is a finite crack cﬁ hick isol .
length 2a in a micropolar solid. Figurga shows a crack and wheret, y,, and y, are thickness, displacement, and rotation

some particlesmaterial points on the crack surfaces. When thespecmc surface energies, respectively. Dimensions of these two

H — _ -1
crack propagates, crack-tip particles separate from each other. SHface energies afey,J=[y,]=FL "
like a crack in a classical solid, this separation of crack-tip par- |1y Coupled Micropolar Griffith’s Criterion. In this form of

ticles is a two-step process as shown in Figb) &nd Xc). Inthe  the Griffith’s criterion effects of stresses and couple-stresses are
first step crack-tip particles rotate with respect to each other but

do not move, i.e.,

Ap=¢,—h1#0 and Au=u,—u;=0. 17)

In the next step, crack-tip particles move apart but do not rotate
i.e.,
Crack propagation path

Au=u,—u;#0 and A¢p=¢,— ¢$,=0. (18)

After this step, these particles are no longer crack-tip particles
they belong to two free surfacdsee Fig. 1c)). Obviously, the
surface energyU; needed for creating the new free surfaces has
two parts,5U§’ andsUy¢, where&U;” is the surface energy spent
on rotating particles in the path of crack growth adldy is the
surface energy spent on separating these particles from each oth
Figure 2 shows a crack and the dashed line is the crack propag:
tion path. Crack-tip particles on the path of crack propagation ar
shoyvn in this figure. S|m|Ia_r to the surface energy release ra}_qg. 2 Acrack in a micropolar solid and its propagation path.
strain energy release rate is composed of two parts: stress B#d particles shown are the particles on the subsequent free
S8U¢, and couple-stress paftJy'. surfaces.
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assumed to be coupled. Coupled micropolar Griffith’'s criterion (Il) Coupled Fractal Micropolar Griffith's Criterion. A frac-
states that the crack propagates by an amaanif tal crack with divider fractal dimensio® propagates by an

amountémp_ if the following condition is satisfied:
8Ue=8(UZ+UD) = 8U =2ty da=2t(y,+ v4)da. (20) °

_ oM — _ o f _ fof
It should be noted that the micropolar specific surface engrgy OUe=oUet+Ue) = 0Us=2tymdMo, =28yt 7y) 5mDD'24

is generally different from the classical specific enengyObvi- (24)
ously, if (19a) and (1%) are satisfied(20) is automatically satis-  In the next section we use both forms of micropolar Griffith's
fied. In other words, the uncoupled criterion is stronger than tigiterion for calculating the orders of stress and couple-stress sin-
coupled criterion. gularity at the tip of a fractal crack. We will show that both criteria

give equal orders of stress and couple-stress singularity.

4.2 Griffith’s Criterion for a Fractal Crack in a Micropo- 5 Fractal Cracks in Micropolar Elastic Solids

lar Solid. For a smooth crack, surface energy required for crack In this section radial variations of stresses and couple-stresses
propagation is proportional to the lengthrea of the newly cre- around the tip of a fractal crack in a micropolar solid are investi-
ated free surfaces. In the case of a fractal crack the true lengthted. To the best of our knowledge, there is no investigation into
(area of new free surfaces should be considered. Because the tthis problem in the literature. Without loss of generality, a mode |
length(area of a fractal curve(surface is infinity, a fractal mea- problem is solved. Consider an infinite medium made of a mi-
sure should be utilized. The surface energy required to createrapolar material with a finite crack of nominal lengtla.2It is

fractal crack in a classical solid is assumed that the cracked solid is under a uniform tensile stfess
perpendicular to the crack axis applied at infinisge Fig. 8)).
Us=2ty;(D)mp (21) One major difference between this problem and the similar

wheret is the plate thicknessy;= y(D) is the specific surface problem of a fractal crack in a classical solid is that a micropolar
energy per unit of a fractal measure, ang is the corresponding material has two internal characteristic length scalgsandl,.

: . = Herel, andl, are characteristic lengths in bending and torsion,
fr_a_ctal measure and is proportionald8 (see the Appendb._( Spe E%spectively. On the other hand, a couple-stress material has only

one characteristic length For a micropolar material in a two-

; ; ; —F| D
by Borodich{22,23 and has the dimensidry]=FL" ", whereF ?g‘mensional problem only one of the characteristic lengths ap-

andL are dimensions of force and length, respectively. There

two important issues arising from Borodich’s generalization

Griffith’s criterion that should be explaine(t) It should be noted
that y¢ is not a material property. In general, it is possible to ha
cracks with different fractal dimensions in the same materi
Therefore, in Eq(21) y; cannot be a material property; it depend
on both the material and the fractal dimensions of the fract

crack.(2) “Fractal measure” is an ambiguous term; there are dn‘\-/ ri et al.[16], is utilized. When the system shown in FigaBis

ferent definitions of dimension and consequently these d'ﬁeren;_cracked, only one of stress components is nonzero and has a

dimensions have different corresponding measures. For self PR
similar fractals all different dimensigns ha?/e the same value aX iform distribution; all other stresses and all couple-stresses are
?ntically zero. When the crack is formed, stresses and couple-

. . . .
hence the corresponding measures they define are |dent|% resses are perturbed. This stress perturbation is significant only

Therefore, for self-similar fractals “fractal measure” is not a -
ambiguous term. However, this is not the case for self-affine fr;]n- a finite zone around the crack. For the cracked system al

tals: different definitions of dimension aive completelv differen tresses and couple-stresses are nonzero in the crack-effect zone.
dim;ansions for the same self-affine fracgtal set O%viouysl ther he crack-effect zone may be covered by a digk as shown in

. . . ' 4 ig. 3(@). We assume that the micropolar material is centrosym-
evant fractal dimension for calculating the surface energy of

fractal crack is the divideflatend fractal dimension. Therefore, rhetric isotropic and homogeneous. The strain energy of the sys-

the specific surface energy should be defined per divider fracES[n may be written as

measure, although it can be defined for other fractal measures as

well. Ue:UZ+U2“:f
For a fractal crack in a micropolar solid, Griffith’s criterion R

again has uncoupled and coupled forms and only the surface emereo;;, mj;, &;;, andy;; are stresses, couple-stresses, strains,

8ars in the equilibrium equations. Therefore, it is assumed that
e medium has a characteristic length and it is denoteld Ibys
\a/l%nown that even for a force control loading this characteristic
Iength appears in the stress solutions in the form/af where
a" is a geometric characteristic length of the problem, for ex-
[nple hole radius or crack length.
The method of crack-effect zone, which was introduced by Ya-

1 1
Ea’,]s”—t—zm,]x” dv (25)

ergies should be modified as and curvatures, respectively. The strain energy can be decomposed
" p p into two parts as follows:
8US=2ty,(Dp,)dmp_ and sUL=2ty}(Dp)omp L L
(229) Ufﬁﬂ %(E‘Tijsij"'zminij)dv
8Us=8Ug+ 8Ug=21[ y(Dp) +¥j(Dp)]omp_  (220) ‘ . .
where y}, and y}, are fractal specific surface energies per unit of + Jmc 5 Tij it Eminij)dV' (26)

latent fractal measure armDD is the latent fractal measure. Thus R
we have the following two forms of fractal micropolar Griffith’s When the crack propagates by an infinitesimal amadmt the

criterion. change of the strain energy 1. is dominant, hence
. e Lo 1 1
(I) Uncoupled Fractal Micropolar Griffith's Criterion. A SU ;5J (_ eI --)dV 27
fractal crack with divider fractal dimensidl, propagates by an € | 2 Tii®ii T MiXij G- 7

amountomp | if the following two conditions are satisfied simul-

For a centrosymmetric material stress-strain and couple-stress-
taneously:

curvature relations are uncoupled, i.e., stresses are not functions
SUT=5UY=2t ,ylfJ smp (23a) of curvatures and c_ou_ple-stress_es are not fun_ctlons of strains.
ol Therefore, the constitutive equations may be written as

m__ ¢ _ f A~
OUe = 0Ug=2ty,6mp,,. (2%) 0ij=Cijuer and my;=Ciji xk (28)
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Fig. 3 (a) A two-dimensional micropolar solid with a finite fractal crack perpendicular to the applied stresses, (b) an infinite

micropolar solid with a finite fractal crack parallel to the applied stresses

whereCij andéijk, are fourth-order tensors and are mechanicé “a.” Here rq is a function ofa, |, », and H, i.e., rg
properties of the material. The following asymptotic stresses aref(a,l,v,H). Using Buckingham'¢[78,79) 11 theorem we must

couple-stresses are assumed at the crack tip have
|
_ -« r | A
oij(r,0)=Kyr 1fn‘(9vvvg-H) (2%) S=dl=,pH| or re=ad|—,vH|. (32)
a a a
N - I o . . .
m;;(r,0)=Kr~2f;;| 6,v, —,H) (2%) As itis seen from(32), r's is not necessarily proportional tcea:”
a The functional form of® cannot be found using dimensional

whereK! andK! are fractal stress and couple-stress intensity fa@nalysis and this makes the use of crack-effect zone method very
tors, respectively, anHl is the Hurst exponerisee the Appendix difficult. But we know that for most engineering m_at_erlehls_xs

We will calculate «; and a, using the method of crack-effect VY small (/a<<1). We also know that the following limit exists:
zone. The above asymptotic stresses and couple-stresses are domi-
nant forr<rs andr=rs, respectively. Therefore, E¢&29) and

(2%) are valid in a diskRs with radiusrs=min(rs .rs). Here, the
method of crack-effect zone should be used very carefully. Be- .
cause the change df, in 9, is dominant, the change of strainbecause whelva tends to zero for a constang™we approach

Iim|,aﬁo€ll({;,v,H):ﬁD(O,V,H):(I)(v,H) (33)

energy may be expressed as the classical theory and obviously is defined for the classical
theory and is finite. Thus we have a complete similarity or a
SU.=8 e+ Em., dves (Ema similarity of the first kind(see, for example, the excellent book of
€ R\ 2 €1 o ThiXij |2 =l Barenblatt{80]). Therefore according to dimensional analysis for

very smalll/a(l/a<1)® can be considered independent!fd

1 1 1 and replaced by its limitb. Therefore,rs~a for l/a<1. As a
+5mixj |dV= 5fm (Egijsij + EmiJXiJ)dV- (30) ' matter of fact, we do not need to limit ourselves to the ddae
s <1. We can show thab is not a function of/a as we see in the
From (29) and(30) we have following. We know that for a smooth crack both stresses and
) A2 i ; ;
SU,=5U7+ sUM (313) couple-stresses have an~'“ singularity regardless of the size of

the characteristic lengty of the cracked micropolar material.
SUZ 5(r;a1r;a1r§) and sUM 6(r;a2r;a2r§) (31b) SupposcaT that the rgdlus of the domlnar;t_zzgne of stress and couple-
stress singularity igg. Thus, sUgxd(rs ““)=46(rs) and 6Ug
where “” means “proportional to.” For a rectilinear or fractal « §(a). Therefore, according to Griffith’s criterion we must have
crack in a micropolar continuumy, is not necessarily proportional rgca. Thus
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=f(v). (34)

L[
@(—,V,H=1
a

For a fractal crackH is a local parameter whil&/a is a global
parameter. The reason is thidtis defined only for the fractal
crack, which has 2-measutarea zero butl/a is defined for all

points of the domain other than the crack. Therefore, we expect

to be separable, i.e.,

L . [ -
q)(a,v,H)=®1(a,v)<D2(v,H). (35)
From (34) and (35) we obtain
L ~
@(E,V,H):(D(H,V). (36)

Thereforer g is always proportional to 4" regardless of the value
of I/a.
From (31b) we have

S8UZx8(a272%1) and SUT= 5(a2™2%2), (37)

The next thing we need is the asymptotic form of surface energies.

From (22) we have

1
S(atM) 5=H<1
SU e U L 5U o (38)

8a%) O0<Hs >

We use both forms of Griffith’s criterion and show that they give

us the same result.

Using uncoupled micropolar Griffith’s criterion is easier and

yields
1H 1
s(a’™) EsH<1
d(a 2" 1 (39)
8(a?) O<Hs§
1H 1
S(a™m) EsH<1
S(a? %)« % (3%)
5(@% O0<H==
2
Thus
2H-1 1 Het
— —<
2H 2%
a = ay= 1 (40)
0 <=
O<Hs= 5

Using coupled Griffith’s criterion is tricky. Frorf20), (38), and
(39) we obtain

1

S(at™) S=H<1
C,8(a% 241)+ C,8(a%~2%2) (41)
8(a% 0<H< 5

whereC; andC, are not functions of. We prove by contradic-
tion thata, and @, must be equal. Suppose thai# «, and for
examplea;>«a,. Notice that “<” means “proportional to” and
that Eq.(41) holds for an arbitrary crack lengtha:” For a very
large “a” (a>1) we can write
a2—2a2>a2—2al. (42)

Hence

Journal of Applied Mechanics

C,8(a% 2%1)+C,y5(a?2%2)

1

S(atM) S=H<1
=C,p8(a 2*2)x 1 (43)

3(a?) 0<Hs§

Thus
2H-1 1 Het
—<
2H 2

ay= (44)

0 O<H=-

On the other hand, for a very smald® ( a<<1) we can write

a? 2v>g?2a, (45)
Thus
C,8(a% 2%1)+C,8(a% 2%2)
1H 1
S(a™™) st<1
=C,8(a% 2*1)x % (46)
8(a?) O<Hs§
Hence
2H-1 1 Het
—<
2H 2-1°
A= (47)
0 O<H= <

From (44) and(47) we see thatv;= a,, which is a contradiction.
Therefore our assumption was false andand a, must be equal,
ie.,

2H-1 1 H<1
-<
2H 2 =
A= 0pr= 1 (48)
0 sz
O<H >
Therefore
—2H-1 —2H-1 1
i Mt Ty 8870 g=H<l
(49a)
0 0 -
ojj~r%  my~r asr—0 0<H$E- (4%)

It is seen that both forms of Griffith’s criterion yield the same
result: stresses and couple-stresses have equal orders of singular-
ity and this order of singularity is the same as that of stresses at
the tip of a fractal crack in a classical continuum. This result is
similar to that reached by Sternberg and MUJBbE]: that in a
couple-stress medium at the tip of a smooth crack both stresses
and couple-stresses have'’? singularities. This is also true for
self-similar cracks; orders of stress and couple-stress singularity
are equal.

A similar result can be reached for mode IV self-affine cracks.
A mode IV fractal crack is shown in Fig.(8). This new mode of
fractal fracture was introduced by Yavdii5] and Yavari et al.
[14]. As was done for a mode | fractal crack, the orders of stress
and couple-stress singularity can be calculated. The only modifi-
cation in the analysis is to change Eg§7) to read([14,16])

SUZx 5(altH2aH) and sUTx s(altH222H)  (50)
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2. SCU{,U;.

Consider a seBCR". An affine transformation of real scaling
Mode 1T Model ratios  rq,ro, ... r, (0<r;<1) transforms each x

l =(X1,X2, ... Xp) €S iNto r(X)=(r1Xq,Mol 2, ... [ Xy) €1(S).
The setS is self-affine if it is composed oN nonoverlapping
subsets congruent tdS). If the above property holds f@when

ri=r,=...=r,=r, itis called a self-similar set. A self-similar
fractal is invariant under an isotropic length-scale transformation
- while a self-affine fractal is invariant under a transformation with
different length scales in different directions.
ModelV. o Mode 1T Roughly speaking, measure of a ST R" tells us about the
™ size of the set and is denoted pyS). In other words, measure is
a generalized sizew is a measure ofR" if it assigns a non-
negative real numbe(possibly +=) to each subset oR" and
Fig. 4 The four mode_s of fractal fracture: mOdF_,‘ | (opening satisfies the following requirements:
mode), mode Il (shearing mode ), mode IIl (tearing mode ), and
mode IV (axial mode ) 1. u(d)=0
2. u(A)=pu(B) if ACB
3. If A,A,, ... is afinite or countable sequence of subsets of
The stresses and couple-stresses have the following asymptotic R" then
forms: P *
—H2—H+1 —H2-H+1 1 m UA&)SEMW (A2)
o~ ——gr s Myj~T——g—— asr—0 —<H<1 =1/ 1=t
(51a) with equality if A;'s are disjoint subsets di".
1 Now suppose theBC R" andD € R* U{0}. TheD-dimensional
oij~r% m;~r® asr—0 O<H= 9 (51b)  Hausdorff measure dbis denoted byH°(S) and is defined as
whereg=(5+1)/2 is the Golden ratio. All four modes of frac- HP(S)=1im,_oHY(S) (A3)
ture are shown in Fig. 4Actually, there are six modes. We found
the fifth and sixth modes very recentlj16])). where
For three-dimensional cracked bodies made of a couple-stress ®

:gztcer:leag or a micropolar material a similar conclusion can be HO(S)=inf 2 diam(U,):{U;} is an e—cover of S
. i=1

. A4
6 Conclusions (A4)

; i ; lican be shown thak® has all the properties of a measure. It can
Fracture mechanics of smooth cracks in micropolar continua fC b proper :

reviewed. Griffith’s fracture theory is generalized for rectilineaP€ proved that for any s&§ H~(S) has a jump fromt-o to 0 for
and fractal cracks in micropolar continua. It is seen that Griffitn@ne and only one value dd, which is called the Hausdorff di-
criterion can have two forms: uncoupled micropolar Griffith’s crimension ofS i.e.,
terion and coupled micropolar Griffith’s criterion. Using dimen- . D A1 D
sional analysis and the method of crack-effect zone it is shown Dy=inf{D:H"(S)=0}=sufD:H"(S)= +<}. (AS)
that both forms of Griffith’s criterion predict that stresses anql
couple-stresses have the same order of singularity. This order o
stress and couple-stress singularity is shown to be equal to that of +o  D<DimyS
stresses at the tip of a fractal crack in a classical continuum. HP(S)=

refore

. . A6
0 D=>DimyS (A6)

Acknov-vledgment.s ) There are many other definitions of dimension. One disadvan-
The first author is grateful to Prof. J. W. Hutchins@f Har- tage of Hausdorff dimension is the difficulty of calculating it,
vard University for helpful discussions on generalization of Grif-which makes it impractical. Here we discuss two other important
fith’s theory for smooth cracks in micropolar solids and to Prof. Kgimensions, namely box dimension and divider dimension. All
G. Hockett(of The George Washington Universjtyor helpful  gifferent dimensions somehow measure the complexity of irregu-

discussions on fractal geometry. larity of a set. It should be emphasized that dimension provides
di only limited information about a fractal set. In most definitions
Appendix there is a measurement at scaléFor eache irregularities below

Fractal Geometry. This Appendix presents some conceptdliS scale are ignored and the behavior of measurements as
and definitions of fractal geometry. Here we discuss only thosg© IS studied. .
aspects of fractal geometry that are directly relevant to our inve80x dimensionLet S#J be a subset ok" and letN_(S) be the
tigation. For more details the reader may refer to Mandelbr&mallest number of sets of diameter at mosthich can covelS

[2,81-83, Feder[84], Vicsek[85], and Falcone[86,87. Box dimension ofSis Dy if
S_uppose thaty # O is a subset ofR". The diameter olU is logNB(S)
defined as NE(S)=0("8) as &—0 or Dg=lim, ;———
diam(U)=sug|x—y|:x,ye U}. (A1) 9 (A7)
An e-cover of Sis a countable or finite collection of seft);}

whereO is Landau’s order symbol. It can be shown that always
Dy=<Dg. For self-similar fractals the equality holds. Box mea-
1. O<diamU;)=e, suremp_ is defined as

such that
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mp, =NE(S)sPe

=inf{ >, £P8:{U;} in a finite e—cover of S|,

I
mDleimHOmgB. (A8)

In calculating Hausdorff measure different weight|® are as-

signed to covering setd; while in box measure the same weigh

£Pe is used for all covering sets. It should be noted thg'é is not

n-1 n-1
o TsH<1
Dp= n—1 (Al6a)
n O<H=—
n
Dg=n—H. (Aleb)

tAnd globally,Dp=Dg=n—1.
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Electromechanical Effects of a
Screw Dislocation Around a Finite
1.n.xwon § Crack in a Piezoelectric Material
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Professor, The interaction between a screw dislocation and a finite crack in an unbounded piezo-
g-mail: fracture@yonsei ac.kr electric medium is studied in the framework of linear piezoelectric theory. A straight

screw dislocation with the Burgers vector, which is normal to the isotropic basal plane,
Department of Mechanical Enginesring, positioned around the tip of a finite crack is considered. In addition to having a discon-
Yonsei University, tinuous electric potential across the slip plane, the dislocation is assumed to be subjected
Seoul 120-749, Korea to a line force and a line charge at the core. The explicit solution is derived by means of
complex variable and conformal mapping methods. All field variables such as stress,
strain, electric field, electric displacement near the crack tip, and the forces on a screw
dislocation, the field intensity factors, and the energy release rate are determined under
the combined out-of-plane mechanical and in-plane electrical loads. Also, the effects of
screw dislocation and electrical loads are numerically analyzed.
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Introduction In this work, to extend our previous wotkL1]), we provide the

.interaction between a screw dislocation and a finite crack in an

Studies on piezqelectric materialg were reported aqtively durlrl]rgr]1bounded piezoelectric medium. A simple continuum model of a
the last decade. It is because the piezoelectric materials have bgg

di ; licati fthe elect hanical devi Ble screw dislocation around a finite crack in a hexagonal pi-
used In various applications or the electromechanical deviCes SUGiha|ectric crystal subjected to antiplane mechanical and in-plane

electric material in 1880. It is well known that defects, such g the framework of linear piezoelectric theory using conformal
dislocations, cracks, cavities, aqd |ncIu5|qns, can adversely '”fh’\‘apping and complex variable methods. The field variables and
ence the performance of such piezoelectric devices. For exampiRy forces acting on a piezoelectric screw dislocation around a
these defects carrying charges in piezoelectric semiconductors gafe crack are determined. Also, the effects of a screw dislocation
be sources of internal electro-elastic fielfis]). Therefore, in or- and the loading conditions on the field intensity factors and energy
der to predict the performance and integrity of piezoelectric deelease rate are discussed. The solutions are given for a screw
vices, it is important that the behaviors of various defects atgslocation located in arbitrary position around a crack.
analyzed and studied under the electrical and mechanical fields.

Deeg[ 2] studied the general defect mechanics of a piezoelectric
material using Green’s function method and modeling the defect )
with a collinear dislocation and charge dipole line. Later, fgk Mathematical Model
considered the fracture mechanics problem of a finite crack, and_et's consider an unbounded piezoelectric medium containing a
he ([4]) derived the generalized Peach-Koehler forces acting orcharged screw dislocation located at a poirg,{;) around a
screw dislocation in an unbounded piezoelectric material sufimite crack of length 2, as shown in Fig. 1. The Cartesian coor-
jected to far-field electromechanical loads. Recently, efforts hadenates &,y,z) are set at the center of the crack for reference. A
been made to develop the inclusion models in a piezoelectric ns@rew dislocation core is assumed to be straight and infinitely long
terial (Wang[5], Chen[6], Liang et al.[7], Chung and Tind8], in the zdirection, and subjected to a line force and a line charge.
and Zhong and Meguifl9]). However, the interaction betweenlt is known that in ionic crystals, dislocations can have charges,
defects in piezoelectric media have been little considered. Mongich can be transported along with the dislocatipt2]). The
recently, Meguid and Denffl0] discussed the electro-elastic in-piezoelectric medium is considered to be transversely isotropic
teraction between a screw dislocation and an elliptical inhomogeith hexagonal symmetry, which has an isotropic basal plane of
neity in piezoelectric media, but they obtained only the distribucy-plane and a poling direction afaxis.
tions of the fields. Lee et dl11] presented the forces on the screw The piezoelectric boundary value problem is simplified in the
dislocation and the energy release rate under the interaction Base of out-of-plane mechanical displacement and in-plane elec-
tween a semi-infinite crack and a screw dislocation in a piezoeldic fields such that

tric medium. U=Uy=0, U =W(X,y), @)
Ex=Ex(X,y), Ey:Ey(va)v E.=0. 2
1To whom correspondence should be addressed. . o .
Contributed by the Applied Mechanics Division off AMERICAN SOCIETY OF In this case, the constitutive relatiof43]) become
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov. 9, 02i(X,Y) = Caazi(X,Y) — €15Ei(X,Y), )
1999; final revision, August 9, 2001. Associate Editor: B. M. Moran. Discussion on
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Department Di(XIY) = eleZi(X:Y) +e 11Ei(X,Y), (4)

of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and L
will be accepted until four months after final publication of the paper itself in thiVhereazi(x,y), ¥-i(x,y), Ei(x,y), andDi(x,y) (i=x,y) are the
ASME JOURNAL OF APPLIED MECHANICS. components of the stress, strain, electric field, and electric dis-
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The solution to Eq(13) can be found by lettingv and ¢ be the
certain complex analytic functions such that

WX,y)=W(Z), ¢(x,y)=P(2), (14)

whereZ=x+iy is a complex variable.

A crack on thex-axis is constructed using the following con-
formal mapping function, which transforms the cir¢fe=1 in the
{-plane onto a finite crack of lengtha2along the real axis in the
z-plane,

{= §[z+ NrZ=ra) (15)

Fig. 1 A piezoelectric medium containing a screw dislocation
around a finite crack of length 2 a subjected to far-field me-
chanical and electrical loads

By referring to the solution for an elastic materigl4—16), in
case of a screw dislocation subjected to a line force and a line

placement vectors, respectively. Alsg, is the elastic modulus of charge, the complex potentials for displacement and electric po-
the piezoelectric material measured in a constant electric 8d, tential are obtained, respectively, as follows:

is the piezoelectric constant 1, is the dielectric permittivity
measured at a constant strain.
The electric field components are related to the electric poten-

tial ¢ by
1
E(XY)=— (XY (i=xy). ©) W= A logle= ol +log| £= ==
The antiplane governing equations are simplified to 1
CaaV2W(X,y) +e15V2(X,y) =0, (6) +iA,|log({— go)—I09<E_ o
elSVZW(le)i 611V2¢(X1y)201 (7) J— . 1
where V2= 4%/9x2+ d?/9y? is the two-dimensional Laplacian +mlog{—log{+log(—{o) | +iAs {—Z . (16)
operator.
The boundary conditions on the upper and the lower surfaces of
the crack are to be free of surface traction and surface charge, i.e.,
o,(x,00)=0, D,(x,0°)=0 at|x|<a. (8) 1
’ . ’ 2 _ ®(£)=By| log({— o) +log| {— =
The following far-field boundary conditions are considered: Lo
1 —
Case 1: g,(X,£®)=7, and Dy(x,+«)=D., (9) +iB,| log({— 50)"09(E— o
Case 2: y,(x,*®)=y, and Ey(x,*x)=E,, (10) _ 1
+mlog{—log {+log(—¢g) | +iBs| {— Z ., (A7

Case 3: o,(X,*x)=7, and E,(x,*»)=E., (11)

Case 4: yz(x,*)=7, and Dy(x,+=)=D.., (12) whereA; andB; (j=1,2,3) are real constants, andimplies the
where 7., v., E., andD., are uniform shear stress, uniformeffect of an extra image dislocation considered to prevent the
shear strain, uniform electric field, and uniform electric displacaesidual stress. If the real screw dislocation is emitted from the
ment, respectively. crack which is originally stress frem should be zero. In contrast,

m should be unity if the real screw dislocation originates else-
where and comes near the crack which is originally stress free
Solution Procedure ([16]). Therefore, the potential functiori6) and(17) have three
terms, respectively: the first corresponds to the line force or
charge and its image, the second to the screw dislocation and its
image, the third to the uniform external loads.
The strain, electric field, stress, and electric displacements can
V2aw(x,y)=0, VZ2¢(x,y)=0. (13) then be expressed in the forms

By solving the simultaneous equations, the governing Ejs.
and(7) give
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Y(X,Y) = Yo X, y) —i ')’zy(xvy)
AW AW dg

T dz  d¢ dz

1

s 1
+ —

+iA,
(o 1-¢¢,

E(va) = EX(va) —i Ey(XwY)
do ()

A ¢ +
Y -2

£ )
{go—1

+m—1

1

dd(¢) dZ

1 B( ‘. §§0)
Z2—a?| -4 -1

1
+ —

(o 1-¢¢,

U'(ny) = sz(XJ) - I Uzy(x1y)

1
+_
g{

+m—1)+iB3

B dW(§)+ dd(¢)
TCTyz T gz
—; (C4sA1+€15B7) ‘ +§—£_0
Y w T eS| T “—0_1
1
+i(Ca4A2+€15B5) + _+m—1)
o 1-¢¢
) 1
+i(Ca4A3+€15B3) §+E ,
D(X,y)=Dy(X,y) =iDy(X,y)
B dW({) dd({)
=€5 a4z €17 4z
- (e1sA By) d + Zi_o
R — — € - p—
P 1571~ €111 [~lo {71
1
+i(e15A2—elle)(—+ _+m—1)
(o 1-¢¢,
) 1
+i(e15A3— €11B3) 5"‘2 .

’

(18)

(19)

(20)

(1)

_ TenpP e, _ ©sP, 10y,
15 =2 BT ———= (22)
27(Cys€111 €75) 27(Cyy€111 €75)
b, Ad
A= on BT on (@3)
Case 1:
a €117, €50, a cyD..—eq57,
A== 5 T2 B Ry St R )
Cas€111 €15 Caq€111 €75
Case 2:
Az= a B _aE 25
3= E%c: 375 b (25)
Case 3:
- a 7,te;sE., _ac o6
T2 e T2 (20)
Case 4:
a aD.,— €Y.
A3== 5 Vu, B3_§T (27)

whereb,, A¢, p,, andq, are the Burgers vector, electric poten-
tial jump, line force, and line charge, respectively.

Forces on a Screw Dislocation

The forces acting on a screw dislocation with a line force and a
line charge can be obtained, using the relations introduced by
Eshelby[17] and PakK4], as follows:

Fyx=b.o,+ AdD )+ Py, OGEy 28)

Fy: - bzo;rx_ A¢DI+ pf'y-zry"_ qu;/I' )

where the superscriptS and T represent two conceptional do-
mains, i.e.,Sis the internal domain in which a screw dislocation
exists, andr is the external domain in which a crack subjected to
the mechanical and electrical loads exists. Therefore(ZRj.can
determine the forces acting on a screw dislocation in the dofain
due to the stress, strain, electric field, and electric displacement
generated by the crack and the external loads in the domdihe
expressions for the field variableg,, o};, E[, andD] by the
crack and the external loads can be obtained by subtracting the
fields generated by the dislocation subjected to a line force and a

The six unknown constantg, andB; (j=1,2,3) can be deter- line charge in an unbounded piezoelectric medium from the fore-
mined by the theories of the force and charge balance conditiogming field Eqs.(18)—(21), and then by taking a limit af=2Z.
at the core, the displacement and electric potential jump condubstituting the results into E¢R8), we obtain the forces acting
tions across the slip plane, and the far-field loading conditions @t a screw dislocation subjected to a line force and a line charge

infinity ([11]) in the forms

Journal of Applied Mechanics

in the presence of a finite crack as follows:
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- Sin

Fy=—[b,(CssA1+€15B1) + Ad(e15A1— €11B1)]

1 [ 0110, r . 0.+ 0,
sin(6— 6,— 0,) +cosé ta >

21,1,

r

—[b(CssAs+€15B2) + Ad(e15A,— €11B)) ]

2
“a [by(CasAs+€15B3) + Adp(€15A3— €11B3) ]

+ ( pzAl_ qul)
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et
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et
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1
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Jrar, S( 2

{cog 60— 6,— 6,) —cosb}

2rqr,

+[b(CssAr+€15B2) + Ad(e15A,— €11B)) ]

sin
Vrals

m (01+02>

2

2rqr,

r _ 01+ 6,
{sm( 60— 60,— 02)—cosetar( 5 ) H

2 .
+ a [by(CssA3+€15B3) + Adp(€15A3— € 11B3) ] 3'“( 0—
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NAELP

r
2rqr,

1
- sin

LKLY

2

- ( pzAl_ qul)
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CO —
\r1r2 2 2r1r2

- ( pzAZ_ quz)

2

{coq 6— 6,— 6,) +cosb}

{ ) 01+ 6,
sin(0— 61— 02)+cosetar( >

r
——co
Jrars 5( 2

2
- a(pzAS_quS) ” (30)

Equations(29) and (30) give the solution for a screw dislocation
located in arbitrary position around a crack.

Zhang and Li[16] presented the-direction force on a screw
dislocation on the«-axis for an elastic material without any exter-
nal load. If all the electrical quantities and the line and external
loads vanish from Eq(29), it agrees with their solution.

Field Intensity Factors and Energy Release Rate

Extending the traditional concept of stress intensity faktoto
other field variables, we can introduce the strain intensity factor
K?, the electric field intensity factd¢F, and the electric displace-
ment intensity factoK®. These field intensity factors can be ob-
tained by Eqs(18)—(21), in the case of a screw dislocation lo-
cated in arbitrary position around a crack, in the forms

Ke(xza)= lim vE2m(ZFa)y,/(Xy)

Z—*a

\/;AI [Zo*a
“Va| MmNz 33
+

A Re/ 2222
2 M™RENZ T3

) = 2A3}, (31)
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KE(xa)= lim Vx2m(ZFa)Ey(X,y)

Z—*a
_ﬁ - [Zo+a
" NVa 1"MNZFa
+

+B Re/ 222228 32
2 m e ZO:a -+ 31 ( )

K7 (za)= lim Vx2m(Z+a)o,/(X,y)

Z—*a

o Zoia
“Va (CaaA1T€15B1)| Im Z,7a

Zo*a

— + —
(CasPz 91552)(m Re JTa

T2(CagAzt e15‘33)} : (33)
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KP(xa)= lim Vx2m(ZFa)Dy(x,y)

Table 1 Material properties of PZT-5H ceramic

Elastic modulus Caa
Piezoelectric constant €5
Dielectric permittivity €
Critical energy release rate G,

Z—*a
Zo*+a
(e15A1— €11B1)| Im Zo7a

2.3xX 101 (N/m?)
17.0(C/m?)
150.4< 107 1°(C/Vm)
5.0

—(e15A2— €11By)| m—Re Z,5a

Table 2 Basic values for numerical example

T2(e1A3— € 1183)} ,

(34)  Burgers vector b, 1.0<107° (m)
Electric potential jump A¢ 1.0(V)
where Line force P, 10 (ﬂ}/m)
Line charge d, 1.0 10 ° (C/m)
Zo+ a rz { 02_ 01)
Re\/ =\/—cCo ,
Zo_a rl 2
Im - /ZO+a: r—zsin b2~ 01 (35) = 4.4x10° i) D= 2.0x10°
Zy—a r 2 ) To=9.5x10°5 Eu= 2.0x105 (vim)
a=0.01 m
Zof a l’l 017 02) 0.025 ; Case |
Re 4/ =1\/—co , fa=0.5 o8
Zyta ry < 2 3 (v )‘_‘“_‘ gase§ B
0.02 PZT-5H ceramic I c::4 _
ZO_ a \/ﬁ 01_ 02 Case 1
Im \/=——=\/—sin ——|. F (ta=20_____ ase2
Zyta rzs 2 (36) - = gase:
. ) ) . 0015~ - — - - Cased
As shown in Eqs(31)—(34), the intensity factors are divided | T -
into three terms: the first is by the line loads, the second bythe § | =77+ — - — . —. —
dislocation, and the last by the external loads. 0.01 - —

If only far-field external loading conditions are applied, Egs.
(31)—(34) reduce to Pak’s resul{3]). Also, if all the electrical
quantities, the line loads and the far-field loading conditions are
eliminated from Eq(393), it is reduced to the solution of the purely
elastic case proposed by Zhang and 16].

The energy release ra for piezoelectric materials under the
antiplane shear case can be evaluated by the generalized path-
independeng-integral ([3]) in the form

Force on Dislocation, Fx (N/m)

B KK — KEKD
2

J

37

For a screw dislocation located in an arbitrary position around9- 2

crack, the energy release rates at both crack tips can be derived®By®: 0
substituting the field intensity factors into E@7), as follows: -
7 2 To= 4.4x10° (N/m?) D= 2.0x1073 (Cim?)
T o=a =9.5%10- E.=2.0x10° (vim)
G(*a)==—|(CA?+2e,A1B;— €1,B?)| Im Tom 55 "
(xa) Za[( 4471 15A1B1— €11B7) Z,7a a=0.01 @
0.012 i~
Case 1
—2(C4A1A2 T €15A1Br+e15A5B; . (Wa=05)_____ Case2 -
. P — — Case3
. [Z,*a . Z,*a 001  PAT=SHceramie L Cased |
—€ m m—Re Case I
11B1B>) Zo7a Z,7a = i (Wa=20)_____ .
% —_ — Case3
F4(CaaPrAst 1A Bste1B1As & 0008~ - — - — - Cased |
— - . -
[Zo+ s e NI )
0—a 2 2 ~
— € 1lBlBg)|m Z__+(C44A2+2915A282 & 0.006 — ~ ~ —
O+a % ~ ~
a + =~
) Zoza|? 5 RN
—e11B3)| m—Re 7= T4(CaA2A3 T €15A2B3 g 00047 B
o+a S
+e15B,A B,B R \/Zoia
e —e m—Re
152273 112 3) ZOIa

+4(CaAS+201A3B3— €11B)) . (38)
The energy release rates for four possible boundary conditions
can be, respectively, determined by inserting E88)—(27) into

Eq. (39). angle, 6
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Fig. 3 Force on a screw dislocation,

F, versus dislocation
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0.02 I I I
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o= 9.5%10-

0.015

0=30(deg), a=0.01 m)
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D.,=2.0x10" (C/m2) -
E.,=2.0x10°(v/m)

I

0.005

Force on Dislocation, Fx (N/m)
T

-0.005 L | 1 | |
0

Normalized Distance, #/a

Fig. 4 Force on a screw dislocation,
tance, r/a

If the line force, line charge, and screw dislocation are elimitast, the force in thg-direction F, increases first and then de-
nated from Eq(38), it agrees with the solution for the pure|ycreases with the increase of angle I’egard|ess of the normalized

external loading case of P4R].

Discussion

F, versus normalized dis-

0.01 r i
- PZT-5H ceramic e -
0008 — [ h 1/a=0.5 R
[ r/a=2.0 X 7
ooos |- | Y - :Z - g(s) L ’ ,
0.004 — Tl _

0.002

Force on Dislocation, Fx (N/m)

Tw= 4.4x10¢ /m?)

05 Yo=9.5x10-5
L 0 =30 (e, 2=0.01 m
-0.002 - :
-5x10-3 0

Electric Displacement, Do (C/m2)

Fig. 6 Force on a screw dislocation,
placement, D,

distancer/a.

Figures 4 and 5 show the forces acting on a screw dislocation as
a function of the normalized distancéa. F, increases with the
increase of normalized distance irc®/a<1.5 approximately in

A lead zirconate titanate piezoceramic ceramic of PZT-5H Bpite of some exceptional trend of Case 2, and is little affected by
considered for the numerical analyses, and its material properttBg change of normalized distance féa>1.5.F, increases up to

are given in Table 1. Table 2 presents the values of the Burgéf@= 1.0 and then decreases with the increase/af

vector, electric potential jump, line force, and line charge applied Figures 6 and 7 show the forces acting on a screw dislocation as
for numerical examples. The effect of extra image dislocations @function of the electric displacemeDt. . In Case 1 subjected to
observed in the cassm=0 in which a real screw dislocation is Shear stress as the mechanical IdadandF, are proportional to
emitted from the crack. Because of the symmetry in geometry aHte €lectric displacement. However, in Case 4 subjected to shear
loading, it is sufficient to consider only the case that a scregirain, Fy is inversely proportional to the electric displacement.
dislocation exists near the right tip of a crack in the first quarter &imilar trends are obtained for Cases 2 and 3 under the electric

the rectangular coordinate system of Fig. 1.

Figures 2 and 3 show the forces acting on a screw dislocation agigure 8 shows the normalized energy release raes
a function of the dislocation anglé. For all cases of loading (*@)/G. as a function of the dislocation angteunder Case 1.
conditions, the force in the-direction F, increases with the in- The normalized energy release rate at the right crac (g)/G.,
crease of angle for/a=0.5, but decreases fofa=2.0. In con-

0.015 I ‘ -
PZT-8H ceramic =~ _____

g & —
%; 001 o= 44x10% v
L’; N Ye=9.5x10-5
S / © 8=30ep), 2=0.01 m)
= | N
8
] / =~
=] -
=
b !
g 0.005
g .
(18

Normalized Distance, ¥/a

Fig. 5 Force on a screw dislocation,
tance, r/a
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D,=2.0x10"Cm2 |
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F, versus normalized dis-

field E...

shows the different results fo¥a=0.5 andr/a= 2.0, because of

5x10-3

F, versus electric dis-

0.006 J
0.004 — o= 4.4x105 U /, - /f
£ | Vo= 9.5%10° P
é;, 0 =30 @), a = 0.01 (m) e
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2 0 ,
2 /,/ s 5 |
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St A R rfa=2.0
P ’ ‘
e . Va i
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% o5 0 5x10-3

Electric Displacement, Do (C/m?)

Fig. 7 Force on a screw dislocation,
placement, D,

F, versus electric dis-
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G(xa)l G, versus

the effect of a screw dislocation. On the other hart@l,
(—a)/Gg, at the left crack tip increases with the increase of angle
for bothr/a=0.5 and 2.0.

Figure 9 shows the normalized energy release raBes
(*£a)/G, as a function of the normalized distanda under Case
1. Generally,G(a)/G., decreases with the increase rgf, and
G(—a)/Gg, increases.

Figure 10 shows the normalized energy release ra&des
(xa)/G,, as a function of the electric field.., under Cases 2 and
3. In this figure, the normalized energy release rates at both crack
tips have almost similar values in the overall viewpoint. Here, it is
noted thatG(=*a)/G., may have negative values under the spe-
cial electric field. This means that crack growth in a piezoelectric
material can be arrested by changing the direction and magnitude
of the electric field, because of the electromechanical coupling
phenomenon.

The similar trends with Figs. 8—10 are obtained for other load-
ing cases.

In the case ofn=1, where the real screw dislocation originates
elsewhere and comes near the crack, the results have the exactly
same trend with the above figures in the casenef0. The nu-
merical values ofn=1 are larger than those afi=0 a little, but
the differences of values between two cases are too small to dis-
tinguish in the overall viewpoint.

Conclusion

A theoretical analysis was performed for a screw dislocation
with a line force and a line charge around a finite crack in a
hexagonal piezoelectric crystal under the far-field antiplane me-
chanical and in-plane electrical loads. The field variables near the
crack tip and the forces acting on the dislocation were obtained by
a complex variable and a conformal mapping technique. The field
intensity factors and energy release rates at both crack tips were
also determined as a function of the location of a screw disloca-
tion subjected to line and external loads. The results were verified
by comparing with previous works. The numerical analyses pre-
sented the interaction between the defects by showing that the
forces acting on the dislocation and the energy release rates are
affected by the position of a screw dislocation and loading
conditions.
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A Critical Reexamination of
Classical Metal Plasticity

C. D. Wilson P. W. Bridgman’s ear_ly work on flow_and fract_ure in t_he presence of hydrosta_tic pressure

o showed no systematic effect on strain hardening. This experimental observation led to the
conclusions that yielding does not depend on hydrostatic stress and that the yielded
material is incompressible. Classical plasticity theory was largely built on these observa-
tions. New experiments and nonlinear finite element analyses of 2024-T351 aluminum
notched round bars has quantified the effect of hydrostatic tensile stresses on yielding.
Nonlinear finite element analyses using the von Mises (yielding is independent of hydro-
static stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic stress)
yield functions was performed. The von Mises results overestimated experimental load-
displacement curves by 485 percent. The Drucker-Prager results essentially matched
the experimental results. The only additional data requirement for the Drucker-Prager
yield function is the compressive yield strengfidOI: 10.1115/1.1412239

Department of Mechanical Engineering,
Tennessee Technological University,
Cookeville, TN 38505-0001

e-mail: chriswilson@tntech.edu

Introduction classical metal plasticity based on Bridgman’s two observations.
. ) o ) Plasticity textbooks by Hill[3] in 1950 and Mendelsof4] in

~ Bridgman and Classical Metal Plasticity. In his book,Stud- 1968 are examples of classical plasticity. Even modern treatments

ies in Large Plastic Flow and Fracture®. W. Bridgmar{1] sum-  on plasticity, such as Lublind6] in 1990 and Stouffer and Dame

marized hls work on pla_stlc flow and fracture in the presence pf] in 1996 assume that there is no hydrostatic pressure depen-

hydrostatic pressure. Bridgman’s research was motivated by #énce for yield and incompressibility as fundamental assumptions

discovery that the ductility of mild steels increases greatly wheBr metal plasticity. These assumptions are also the basis for metal

exposed to hydrostatic pressures greater than 300,000 psi. Dutikticity in commercial finite element programs. For example, the

World War I, the National Defense Research Committee anfleory manual of ABAQUY 7] directs potential users to use a

later, the Watertown Arsenal, funded an extensive investigation @gld criterion for metals that has no dependence on hydrostatic

the effect of hydrostatic pressure on the ductility of ballistic steelgiress.

Bridgman's earlier work([2]) showed no systematic effect of |t is important to examine hydrostatic stress and incompress-

pressure on strain hardening. However, his later work was chaility in mathematical terms. To simplify the discussion, assume

acterized by more precise measurements which established a dgfit the principal stresses are given by, o,, and o53. The

nite effect of hydrostatic pressure on the strain hardening curvgsncipal stresses are the roots of the stress cubic

of mild steel. His experiments were essentially tensile tests on s 5

smooth specimens in a pressure chamber. 0°=110°=l,0—13=0, (1)
Under the conditions of hydrostatic pressures up to 3100 MR@ereqis a principal stress and, |, andl  are functions of the

(450,000 psi, Bridgman found that a major effect of hydrostaticstress state called the stress invariants. In terms of principal
pressure was increased ductility. In other words, much larggfresses, the stress invariants are

strains before fracture were obtained when hydrostatic pressure
was applied as a boundary condition to a tensile test. Additionally, l1=01t 0ot 03
Bridgman found that the material volume in the gage section did
not change for very large plastic strain changes. Therefore, a metal
was assumed to have incompressible plastic strains. These two l3=0q0503. )
experimental observations about metals—no influence of hydro- . . ) .
static pressure on yielding and incompressibility for plastic strahﬂhgrgzg t?:tsrnecs;rjg?sagesfﬁ]i?;;ieﬂrfd asrm=1,/3 and the
chan_ges—ar e two of the basic tenets of classical metal pl.aStiC'tyBridgman’s first observation that the ﬁ)}drostatic pressure had
.Brldgmans tests were conducted on unnotched tensile b‘.’H effect on the yield behavior of metals until very large hydro-
with pressures exceeding 100’00.0 psl. Such e'xter.nally app|.l tic pressures led engineers to develop a plasticity theory that
pressure levels are rarely seen in typical applications, leadiggy acts the mean stress from the principal stresses. The resulting

many researchers to assume that the effect of all hydrostaligasses are called the deviatoric streSesS,, andS;, and are
stress—both tensile and compressive—is negligible. GeneratiQpsiten as

of material scientists and engineers have studied classical metal
plasticity based on the postulate that yield is not affected by hy- S;=o1—on
drostatic stress. However, notched components loaded in tension _
or bending can internally develop large hydrostatic stresses. S=02~0m

Generations of material scientists and engineers have studied S3=03— 0. (3)

l,=—=(010,+ 0503+ 0304)

- The deviatoric stress invariants are the coefficidptsl,, andJs

Contributed by the Applied Mechanics Division ofiE AMerican SocieTy o Of the cubic
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- 3 2
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March 1, $°=J,5°-3,5-33=0 4)
2001; final revision, June 12, 2001. Associate Editor: M. Ortiz. Discussion on the . . . ..
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departmerwgfere the invariants are functions of the prlnC|paI stresses and the
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wilnean stress
be accepted until four months after final publication of the paper itself in the ASME
JOURNAL OF APPLIED MECHANICS. J,=0,
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©3 Isotropic hardening implies that the tensile and compressive
7~ 7 yield behaviors are the same. While this is approximately true for
d / some materials, it is not true in general. Some materials exhibit
\ different magnitudes of yield strength for tension than for com-
\ pression. This effect is called the Bauschinger effect and becomes
J/ important whenever stresses are to be predicted after a reversal of
/ loading. Kinematic hardening is often used to describe materials
S . with a pronounced Bauschinger effect. For kinematic hardening,
/\""“ Mises the new yield surface is assumed to have the same radiashe
initial yield surface. However, the axis of the yield surface shifts
in principal stress space.

Different metals have differing amounts of Bauschinger effect.
Purely isotropic hardening represents an extreme of no Bausch-
inger effect. Kinematic hardening represents the other extreme.
However, a linear combination of the two models is useful in
Drucker-Prager describing real materials. In practice, isotropic hardening is easier
to implement and is more often used.

The second basic tenet of classical metal plasticity is incom-
pressibility. It was observed that volume change during plastic
deformation is nearly elastic. In terms of principal strain incre-
mentsde,, de,, anddes, the sum of the plastic strain incre-
mentsdsﬁ' (or plastic dilation ratemust be zero. Mathematically,
this condition is

V4 o>

Fig. 1 von Mises and Drucker-Prager yield surfaces

def'=de}'+deb'+ def§' = 0. ©)

The relationship between plastic strain increments and the yield

Ju= - - -~ . 5 condition is glven_by an ass_omated flow _rule. Thus, a flow rule
s=(01=om)(02=om)(05~ 0m) ©) governs the postyield behavior of a material. The general form of

The deviatoric stress invariants can also be written in terms of th@a associated flow rule is

deviatoric stresses

1
Jzzg[(a'l_02)2+(02_03)2+(03_01)z],

1 dsi‘"zd)\a—f, (10)
I (S S, 9
whered\ is a positive scalar. This type of flow rule is also called
J3=5,S,S;. (6) anormality flow rule because it assumes that the strain increment

is normal to the yield surface. Drucker and Pra@rshowed that
_the plastic dilation ratede?' can be summed from Eq10) to
é)btain

For classical metal plasticity, a yield function is a functibn
=f(oq1,0,,03) such that wherfi<0 the material behavior is elas
tic. For f=0, the material behavior is plastic and yielding occur
Assuming that yield is independent of the hydrostatic stress leads of
to a yield functionf =f(J,,J3). The most commonly used yield deP'=3dx e (12)
function, the von Mises yield function, assumes further that yield- 1
ing is not a function ofl; Noting that the von Mises yield function is not a function Igf

leads to the result in Eq9). In other words, the von Mises yield
f:\/z_ K, (") function f does not depend on hydrostatic stress and the plastic
wherek is the yield strength in pure shear. For hardening mateuhlation rateds?' must be zero. Thus, the two observations of
als, k is a function of plastic strain. The square root df,3s the Bridgman and the two tenets of classical plasticity are closely
von Mises or effective stress and can be written in terms of thielated.
principal stresses

1 Richmond and Yield Dependence on Hydrostatic Pressure.
Ooff= J33,= \/E[(0’1*0'2)2+(0'2*0'3)2+(0'3*0'1)2]. Although classical metal plasticity has a great deal of inertia in
engineering practice, the basic tenets were challenged in the 1970s

®) by the experiments of Richmond, Spitzig, and Sol&;10]).
For f=0, Eq.(7) can be written as =09, Whereoy is the yield They studied the effects of hydrostatic pressure up to 1,100 MPa
strength in pure tensioo,=v3k. (160 kps) on the yield strength of four stee(d330, 4310, ma-

Rewritting Eq. (7) for f=0 in the formJ,=k? leads to a raging steel, and HY80These pressure levels were significantly
graphical interpretation of the yield function in the principal stredess than the maximum pressures used by Bridgman years earlier.
space. For the von Mises yield function, the yield surface is a Richmond found that the yield strength was a linear function of
circular cylinder of radiuk whose axis is defined in the directionhydrostatic pressure. For high-strength steels, Richmond found
of the hydrostatic stress. Any cross section taken perpendicularthat a yield function identical to one proposed by Drucker and
the cylinder axis will be a circle of radius A von Mises yield Prager[8] for soils described the yielding process. The Drucker-
surface is shown in Fig. 1. Prager yield function is

The discussion thus far has focused on the initial yield surface,
where a material first starts to yield. Many materials exhibit strain
hardening, a process where the yield surface changes shapevioere a is a material constanfreferred to in this paper as the
location or both as the material is plastically deformed. For maryrucker-Prager constantrelated to the theoretical cohesive
metals, isotropic hardening is an appropriate approximation. Esrength of the materiad.. The theoretical cohesive strength is
sentially, isotropic hardening means that the yield surface exparttie stress required to overcome cohesive forces between neighbor-
equally in all directions. For the von Mises yield function, théng atoms. The cohesive strength can be expressed as a fraction of
radiusk of the yield surface grows larger. Young’s modulusk. Dieter [11] gives the range of theoretical

Oei= 0o(ep) —aly, (12)
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r Table 1 Room temperature material properties for 2024-T351
1.600 o Tanss aluminum alloy
© Compression
° g E (psi) 10.4<10°
v 0.33
B (kpsi) 55.7
1550 ° 3, tps 69
o® %, (kpsi) 6.1
g o ¢ (kpsi .
(o] 1.500 Q a 0.03
°© 3
1450 a8 _ o .
T T R T g Drucker-Prager yield function is preferable to von Mises. How-
~5000 -4.000 -3.000 —2.000 —1,000 0 1,000 ever, the Drucker-Prager yield function is rarely used for metal
I, MPa plasticity.
The Drucker-Prager yield function in E€L2) can be written as

Fig. 2 Effective Stress o4 versus [, for 4330 steel ([9
g eff 1 (2] f=(Tpt al—k, (14)
where « is a constant related to the Drucker-Prager constant
The plastic dilation rate for the Drucker-Prager yield function in
E/5.5. As with the von Mises yield functiong, is the yield Eg. (14) is no longer zero sincé depends or ;. Thus, the as-
strength for pure tension and is a function of plastic stegjn sumption of incompressibility in classical metal plasticity is no
Graphically,a can be interpreted as the slope of the graph @énger true andjgﬁl=3d)\a_
o Versusl,. The value ofoe for 1,=S, corresponds to the
typically reported yield strength for a tensile test. The valug;of
for o.=0 corresponds to the theoretical cohesive strength of t
material. For the 4330 steel shown in Fig. 2, the yield strength fE@r’esearch Program )
pure tension was 1475 MPa and the cohesive strength was 59,008 combined experimental and analytical research program was
MPa. ForE of 200,000 MPa, the theoretical cohesive strength watesigned to study the hydrostatic tensile stress effects on the room
approximately 0.B. temperature yield behavior of 2024-T351 aluminum all2]).
Determining the theoretical cohesive strength is a difficult tasfW0 geometries were studied: a smooth tensile bar with a round
therefore, another method is needed for determining the Druck€foss section and a notched round BdRB).

Prager constard If the tensile yield strengtB, and the compres- gy nerimental Program. Tensile tests on smooth, unnotched
sive yield strengtt§, are known.a can be calculated by round bars were conducted for each material with the resulting
S,c—S, tensile strength and hardening properii@® percent offset yield

=3 75 strengthS,, ultimate strengtltg,;, and Ramberg-Osgood harden-
Syet Sy ing exponenn) given in Table 1. The values for Young’s modulus
In terms of a yield surface, the Drucker-Prager yield function i§ and Poisson’s ratio’ in Table 1 are typical handbook values.
a cone whose apex is at a hydrostatic stress equal to the cohe§leenpression tests were also conducted. The resulting compres-
strength. This is shown schematically in Fig. 1. For small to modsive yield strengtts, . and the Drucker-Prager constanare also
erate amounts of hydrostatic stress, this cone would locally gésen in Table 1.
approximated by a cylinder. For this situation, the von Mises yield The NRB specimen details are shown in Fig. 3. The aluminum
function would give comparable results to the Drucker-Pragetloy specimens had a nominal radisof 0.25 in. and a neck
yield function. However, for high levels of hydrostatic stress, theadiusr of 0.125 in., thug/R=0.5. All specimens had an notch

cohesive strength for metals BAL5 to E/4 with a typical value of

a

(13)

N 7497
493"

7
N soorl P& (TYP.)

.500"

o003
250" 003

T

»+.001
020"*63; RADIUS
Fig. 3 Engineering drawing of the notched round bar (NRB) specimen

Journal of Applied Mechanics JANUARY 2002, Vol. 69 / 65



WL
Q

o o ko M o Mk o o o o Ml o o W o Mk i M o Mk o o o o Mk 6 o

;13;9;5;9,/

Fig. 4 Schematic of axisymmetric model of a notched round
bar (NRB)
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Fig. 5 Coarse mesh in the notch region

notch region. A schematic showing the region of the notched
round bar actually modeled is given in Fig. 4. A coarse mesh
typically had 250 elements in the notch region. Medium and fine
meshes typically had 500 and 1000 elements, respectively, in the
notch region. An example of a coarse mesh is given in Fig. 5.

flank angle of 45 deg. The notch root ragichosen were 0.005, A commercial finite element program, ABAQUS], was used
0.010, and 0.020 in. All notch root radjii had a tolerance of for the finite element analyses and postprocessing of results. Large

+0.001 in.

strain analysis and reduced integration options were used. The

All tests were conducted on screw-driven universal testing maenlinear material response was modeled using isotropic harden-
chines in stroke control. An extensometer with a gage length ipfg with a von Mises yield criterion, and again with a Drucker-
0.4 in. and a ten percent extension range was used in all NRBBager yield criterion. Associated flow rules were assumed for
tests. Load and gage displacement data were recorded with aboth yield criteria. The true stress versus plastic strain data from
plotter and digitized afterward. No attempts were made to expetire tensile test was used as input for the hardening curve.
mentally determine volume changes in the test specimens.

Analytical Program. Nonlinear finite element analyses wereResu'tS and Conclusions
used to model the load-displacement response of the 2024-T35The experimental NRB load-displaceméhw curves for 2024-
aluminum specimens tested. The Sandia National Laboratof@51 are shown in Fig. 6 for each notch root radiif?]). Mul-
computer program FASTQ13] was used for preprocessing oftiple specimens were used for each notch root radius, but a single
meshes and boundary conditions. The Q4 element type was usegresentative load-displacement curve for each radius is plotted
for all meshes. Axisymmetric models of notched round bars weie Fig. 6. TheP-v records for all three values gfseem to follow
developed with FASTQ in three levels of mesh refinement in trecommon curve with the smallgsfailing at a lower load. It was

6000

Load P (Ibs)

©000000000®

b p = 0.005 in.
° p = 0.010 in.
° p = 0.020 in.
0 T T T
0 0.0025 0.005 0.0075 0.01

Displacement v (in.)

Fig. 6 Notched round bar (NRB) load-displacement results for all p for

2024-T351
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Fig. 7 Notched round bar
for 2024-T351

1
0.005

Displacement v (in.)

(NRB) load-displacement results

0.0075 0.01

(p=0.0051n.)

6000
5000 1
4000
]
& 3000
g
= 4 Specimen Al2
2000 -
----- von Mises FEA
1000 < Drucker-Prager FEA
Y T T T
0 0.0025 0.005 0.0075 0.01

Fig. 8 Notched round bar
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(NRB) load-displacement results
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Fig. 9 Notched round bar (NRB) load-displacement results (p=0.020in.)

for 2024-T351
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observed that all specimens failed before the load reached antime Drucker-Prager yield function. The good agreement between

stability point predicted bydP=0. No visible surface cracking experimental and numerical results indicates that isotropic hard-

was observed during the tests. ening, when coupled with the Drucker-Prager yield function, ad-
The finite element results using a von Mises yield function anefjuately describes the strain hardening of 2024-T351.

a Drucker-Prager yield function are compared to the experimentalln summary, the yield behavior of 2024-T351 aluminum alloy

results in Figs. 7-9. The von Mises yield function consistentlis more accurately modeled using a yield function that includes a

overpredicts the actual load-displacement response of the NRfdrostatic stress term. The Drucker-Prager yield criterion was

specimens. For the gage displacement at failure, the failure load®wn to capture the hydrostatic tensile stress effects on yielding

predicted using the Drucker-Prager yield function essentiallyithout introducing complications and additional expense. The

matched the test data. The failure loads predicted using the vamly additional data requirement for the Drucker-Prager yield

Mises yield function overestimated the experimental failure loadsnction is the yield strength in compression.

by approximately ten percent. For the load at failure, the failur,

displacements predicted using the Drucker-Prager yield functi ferences

essentially matched the test data. The failure displacements prét] Bridgman, P. W., 19525tudies in Large Plastic Flow and Fracture With

dicted using the von Mises yield function overestimated the ex- SPecial Emphasis on the Effects of Hydrostatic PressuGraw-Hil, New

perimental failure displacements by 20 to 65 percent. Thereforeyy) griagman, P. W., 1947, “The Effect of Hydrostatic Pressure on the Fracture of

the Drucker-Prager yield function was consistently more accurate Brittle Substances,” J. Appl. Physlg, p. 246.

than the von Mises yield function. [3] fl-(|)irlld Fiji(1950,The Mathematical Theory of Plasticit€larendon Press, Ox-
The notched round bar IS an aX|symm_etr|c geometry with a[ﬂ] Men’delson, A., 1968Plasticity: Theory and ApplicatianMacmillan, New

state of stress that is similar to plane strain. It develops a larger = york.

hydrostatic stress than a thin, flat double edge notched bar in g] Lubliner, J., 1990Plasticity Theory Macmillan, New York.

state of plane stress. Thus, the errors reported for notched rourlél s\;ﬁuﬁeh?-scﬁ a?\? vl?/a??k L. T., 199Belastic Deformation of Metalslohn

bars using the von Mlses.cmenon for 2024-T351 are p.rObablyg] ABZyQ?JS Th?aosri/ Meanuacl)I,Version 5.5, 1995, Hibbitt, Karlsson, and Sorensen,

upperbound errors. The differences between the von Mises and |,c. 1995

Drucker-Prager yield criteria may be much smaller for plane stress$g] Drucker, D. C., and Prager, W., 1952, “Soil Mechanics and Plastic Analysis

conditions. for Limit Design,” Q. Appl. Math.,10, pp. 157-165.
: [9] Spitzig, W. A., Sober, R. J., and Richmond, O., 1976, “The Effect of Hydro-
In terms of st_ress concentration faCto!G)( the notched round static Pressure on the Deformation Behavior of Maraging and HY-80 Steels
_bars h_ad(t rang_'ng from 2-7(IP of 0.020 m) to 5-17_(P of 0.005 and Its Implications for Plasticity Theory,” Metall. Trans. AA, Nov., pp.
in.) using equations developed by Neup®4]. For milder notches 1703-1710.

in notched round bars, the hydrostatic effect will be less proEl0] Richmond, O., and Spitzig, W. A., 1980, “Pressure Dependence and Dilatancy

nounced. However. notches in nominally pIane stress geometries of Plastic Flow,” International Union of Theoretical and Applied Mechanics
- ! . Conference Proceedingpp. 377—-386.

may still have hydrostatic effects because the local notchyy) pieter, G. E., 1976Mechanical Metallurgy McGraw-Hill, New York.

conditions are more like plane strain than the far-field plane stre$s2] wilson, C. D., August 1997, “Fracture Toughness Testing With Notched

condition. Round Bars,” Ph.D. dissertation, The University of Tennessee, Knoxville, TN.

f B _Ai [13] Blacker, T. D., June 1988, “FASTQ Users Manual Version 1.2,” Sandia Report
There is a small Bauschinger effect or strength-differeig&l) SANDE8-1326. UGC-705, Sandia National Laboratories.

phenomenon ob_served in 2024-T36, of 55.7 kpsi versus, _ [14] Neuber, H., 1937, “Theory of Notch Stresseg{fanslated from The German
of 59.1 kps). This effect appears to be adequately handled using  for The David Taylor Model Basin, U.S. Navy, by F. A. Raven, 1946
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Vehicle Moving Along an Infinite
Beam With Random Surface
Irregularities on a Kelvin
Foundation

The paper deals with the stochastic analysis of a single-degree-of-freedom vehicle moving
at a constant velocity along an infinite Bernoulli-Euler beam with surface irregularities
supported by a Kelvin foundation. Both the Bernoulli-Euler beam and the Kelvin founda-
tion are assumed to be constant and deterministic. This also applies to the mass, spring
stiffness, and damping coefficient of the vehicle. At first the equations of motion for the
vehicle and beam are formulated in a coordinate system following the vehicle. The fre-
qguency response functions for the displacement of the vehicle and beam are determined
for harmonically varying surface irregularities. Next, the surface irregularities are mod-

e-mail: radiwank@hertz. mech.wits.ac.za eled as a random process. The variance response of the mass of the vehicle as well as the
displacement variance of the beam under the oscillator are determined in terms of the

autospectrum of the surface irregularitieDOIl: 10.1115/1.1427339

1 Introduction varying cross section. Fioa et al[9] examined the behavior of an
Hﬁinitely long Euler beam on a Kelvin foundation with randomly

In structural dynamics it is common practice to model a roaV,ar ina parameters alona the beam. The response due to a con-
runway, or railway track as a beam structure. Typically, a Kelvin- ying p 9 : P

type foundation is used to describe an underlying material, aﬁtban;] lo?.d ;pq;/mgl un|fo;m!y along @he fbeam wfas ?nalyzedcuhsmg
traffic is modeled as moving loads. Many papers deal with a d rochastic finite elements in a moving frame of relerence. thang

terministic analysis of the problem. However, in reality the paran’:?‘-nd Liu[10] performed an analysis of a single-degree-of-freedom

eters of the track structure as well as the loads are usually rand$fiiclé moving along a finite beam with random surface on a
variables. Thus a stochastic analysis of the problem has a Sigrﬁﬁ)_nlmear deterministic Kelvin foundation using finite elements

cant interest, not only from an academic but also from a practicdld Monte Carlo simulation. _
point of view. Lombaert et al[11] studied the behavior of a beam on an elas-

Different aspects of uncertainties for the beam system and loglfshalf-space due to the load from a moving vehicle. The vehicle-
or, possibly, a vehicle moving along the structure have been dkack interaction was disregarded based on the previous findings
Kelvin foundation due to a random excitation was performed bisignificant. Mertrine and Vrouwenveldgt3] used a beam situ-
Sobczyk[1]. Fryba[2] gave an analytical solution to a randomated within a two-dimensional soillayer to represent a railway
force moving at a constant Ve|ocity a|0ng a S|mp|y Supporté@nnel. The tunnel and surface vibrations due to random IOading
beam, and ZibdefB] analyzed the response of an axially loaded?n the beam was analyzed. Again vehicle-track interaction was,
simply supported beam for a random, moving load with timdlowever, not taken into consideration. Furthermore the analysis
varying velocity. was performed for a fixed reference system. Hence the response

Iwankiewicz and 8iady [4] studied the behavior of a simply became nonstationary with time even though a stationary random
supported beam subjected to a stream of deterministic point fordegding process was considered.
moving at constant and equal velocity but with random interar- For the purpose of analysing a railway track or a road on a
rival time along the beam. Ricciard$%] expanded the analysis to subsoil, a Kelvin foundation with frequency-independent param-
loads with random amplitudes, whereas Zibdeh and RacK&itz eters is unrealistic. A better model may be formulated by the use
studied the influence of loads with random velocities. Recentbf a Kelvin foundation which is equivalent to a viscoelastic half-
Sniady et al.[7] performed a study of the beam response for space or a layer over a bedrock as proposed by Dieterman and
loading process where the randomness of both the interarrivaétrikine [14] and Metrikine and Popfil5], respectively.
times and loading amplitudes as well as the velocities was takenn the present paper the parameters of the foundation are nev-
into account. ertheless assumed to be frequency independent and deterministic.

Finite elements have been used for numerical stochastic anaiye surface of the beam is on the other hand irregular, described
sis of the beam response in a number of papers. Yoshimura etigl.a weakly homogeneous random process. An analytical method
[8] performed a finite element analysis of a vehicle moving alongill be presented for the analysis of a single-degree-of-freedom
a simply supported beam with random surface irregularities agghicle moving uniformly along the beam. The problem is formu-
lated in a local coordinate frame, which follows the vehicle, and

Contributed by the Anplied Mechanics Division ofE A © the interaction between the vehicle and the beam is taken into
e e o e coe, _account. No Monte Carlo simulation is necessary since the system
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov. 17IS @ssumed to be linear. A numerical example is given for surface
2000; final revision, June 12, 2001. Editor: N. C. Perkins. Discussion on the pageregularities with an autospectrum which is typically used to de-

hould be addressed to the Editor, Professor Lewis T. Wheeler, De| i i it i
ihanical Engineering, University of’ Houston, Houston, TX 77204’1-47362‘,rtg]nedn:/v(ijl:( t’;é%nbe th.e |rregplarltlgs of a road Su.rface' The analySlS shows that
ﬁ)r certain configurations of the vehicle, the beam and the support
(which may correspond to a real railway strucuiiee interaction

accepted until four months after final publication of the paper itself in the ASM
JOURNAL OF APPLIED MECHANICS.
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2(t) vehicle. By d’Alembert’s principlef (t) = — mgd?z/dt?. It should

ta™ i be noticed that besides this dynamic load the vehicle will also
provide the deterministic static loaid=—myg, whereg is the
ko < gravitational acceleration. In what follows, the static load is dis-
regarded and only the stochastic dynamic response is considered.
) A7 el A determination of the total response could easily be carried out
\_ ) by application of the principle of linear superposition.
Mean Surface Level t ’ . . .
2.1 Harmonic Surface Irregularities. Harmonically vary-
" 7 ing surface irregularities with wavelengthare given by
I > — jkx
L v L y(x)=Ye, 4
) ) ) ) where Y is the amplitude,i= =1 is the imaginary unit, and
Fig. 1 Single-degree-of-freedom vehicle moving along a k=2m/L is the wave number. Inserting E¢) with x=vt into
Bernoulli-Euler beam with irregular surface on a Kelvin founda- Eq. (2), the equation of motion for the vehicle reads
tion e
d?z dz ) . .
Moz +Co a—u(O,t)—leé“’t +ko(z—u(0t)—Ye“hH=0,
has a significant influence on the dynamic amplification of the )

displacement response of both the vehicle mass and the beam.
in which w=kv denotes the apparent circular frequency of the
2 Theory surface irregularities as seen from the vehicle in the local coordi-

A vehicle modeled as a single-degree-of-freedom system witite System. .
massm,, spring stiffnessk, angl viscgus damping, is rr¥oving Solutions to Eqs(5) and(3) with f(t) = —mod”z/dt* are on the
uniformly in permanent contact along the surface of a Bernoulfform
Euler beam at the velocity thus having the along beam position _ ot . —1. ot
x=vt at timet. The beam has the bending stiffnéSsand the 2t)=Z(@)e™, Ul U'(X’wze ' J 1234, @)
mass . per unit length and rests on a Kelvin foundation wittwhere Z(w) and Uj()(,a))=mOwZZ(w)Uj(w)e'KiX are the ve-
stiffness k and viscous damping per unit length of the beam. hicle amplitude and the amplitude functions for the four bending
The material properties of the vehicle and beam are homogenegus/e components in the beam, respectively. l—férao) are the
and constant in time, and the beam axis is supposed to formamplitudes aty=0 for harmonic excitation with unit amplitude,
straight line in the state of static equilibrium. However, the surfage | f(t)=e'*!, and the wave numbei$; = K;(w) correspond to
of the beam has the irregularitigs=y(x) measured from the the roots of the characteristic polynomial,
mean level of the surface perpendicular to the beam axis. Alter-
natively,y=y(x) may be used to describe wheel irregularities or 2 p? , 1YW 2pwv K= po’+iyo
a combination of wheel and surface irregularitisse Fig. L Kj— I El it El =0. (M
A local coordinate system following the vehicle is introduced )
by the transformationy=x—uvt. Due to convection the partial For v=y=0 a cutoff frequency w = /k7u, exists. When
derivative with respect to time in the moving frame of reference <., no travelling waves without attenuation will propagate.

includes a spatial derivative, Physically, waves with increasing amplitudes in the far-field are
invalid. Furthermore only travelling waves with no attenuation
i _ﬁ " i 1) and a group velocity away from the force can exist. The require-
ot X_at . Vox ments may be formulated as
Let z=2z(t) be the vertical displacement of the point mass and JK))x=0, R(Kj)x<0 for J(K;)=0, (8)

let u=u(y,t) denote the vertical displacement of the beam in thl%
local coordinate system, both relative to the respective positions
the state of static equilibrium for no surface irregularity. Puttin
u=au/(9t|x and making use of the fact thg{x) =y(x+vt), the
equation of motion may in turn be written

I,]spe(:tively. HereR(K;) and J(K;) denote the real and imagi-
Hary part of the wave number, respectively. It may be shown that
%nly two of the solutions to Eq.7) fulfill the requirements given
in Eq. (8) on either side of the load; see, e[d.6]. In what follows
the subscriptg =1,2 will be used for the components existing at

d?z dz x=<0 (i.e., behind and under the loadvhereas the components
Mo gz * Co| gy~ WO —vy'(v1) [ +ko(z—u(0H) —y(v1)) =0,  existing in front of the load have subscrigts 3,4. Thus the am-

@) plitude U(x,) of the beam displacement field becomes

where the prime denotes differentiation with respect to the argu- 2

ment. It is assumed that the mean leyg(x) of the beam surface U()(,w)=m0w22(w)_2 Uj(w)eix,

does not change along the beam. Howevey,,ifx) has a deter- 1=l

ministic variation withx, the linearity of the problem implies that {i1,i}={1,2 for y=<0

the total response may be expressed as a sum of the response due (i1,jot =134 for x>0 9)

to the irregularities/,(x) andy(x).
For the beam the equation of motion in the moving coordinat&lternatively the wave componenjs=3 andj=4 could be used

frame may be written for y=0. A summation of all four components is inappropriate,
2 . 5 since this would imply a discontinuity of the displacement field
J*u au J°u . du der the load
El—+u U—Zv—+v2—2 +ylUu—v—|+kU under the load. . .
ax Ix Ix ax At y=0 the displacement, rotation, and bending moment of the

—£(1)8(x) 3) beam must be continuous functions yfA unit amplitude load

X inquires a jump of 1 in the shear force at the point where the load
Here, 1= 9%u/dt?|, is the local acceleration, where&§) is the is applied. Hence, with the positive directions defined in Fig. 1
moving load andﬁ?x) is the delta function. In the present case théhe amplitudesﬁj(w) are obtained by the following system of
force on the beam originates from the single-degree-of-freed@quations:
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1 1 -1 -1 0, 0 Co Y 20)
Ky 0K, —iKs <K || T, | 0 o ks 2
(IKp)? (iKp?  —(iKg)?  —(iK»)?|| Uy 0 | Herewy=/Ky/M, is the circular eigenfrequency of the single-
(IK)? (iKp® —(iKy)® —(iKp3]| T, —1EI degree-of-freedom vehicle, angl = vk, is a characteristic circu-

(10) lar frequency of the surface roughnelssbeing the corresponding
) ) ) ) ) characteristic wave number, is a characteristic wavelength for
Insertion of the wave field given in E¢9) into Eq.(5) leads to  bending waves in the beam, and is the corresponding charac-

the following solution for the amplitude of the single-degree-ofteristic phase velocity. They are defined, respectively, as
freedom massZ(w):

27u, 4 [4Elk
Z(w)=Hzv(®)Y, Hzy(w)=(ioCo+ko)/D(w),  (11) Le=——, ve=1\ 2 (21)

w
where the denominatoB (w), is given by ‘

It should be noticed thatr serves as a kind of Mach number
2 putting the vehicle velocity relative to the velocity of the bending

D(w)=(— w’My+iwcy+ke) — (i@’ MyCo+ w?Mgko) >, Uj(w). waves.
j=1

(12) )
Analogously Eq(9) for the beam displacement may be rewritter? Numerical Examples

as Irregularities of a road surface are often modeled as a weakly
homogeneous processyr(x),xe R} having the one-sided au-
U(x,@)=Hyy(x,0)Y, Hyy(x,o)= Huz(wa)sz(w)-(la tospectral density

Here the frequency response functidg,(x,w) is given by 0. kelky kol
Z iLis)={1.2 f 0 o=y e ke 1 o) 2
~ i Jor=11,2 for x= N 1.ky
o) =3 Do, {10713 0\ otk
Th 1z ’ (14) where gy is the standard deviation of the surface irregularities.

The spectrum has a slope of 1:2 in double-logarithmic mapping
2.2 Random Surface Irregularities. In practice the surface and is valid for wavelengths betweén,=0.1m andL;=10m

irregularities are not harmonically varying, but will instead b&orresponding td; =27/10 m * andk,=2#/0.1 m *. The char-

described by a weakly homogeneous stochastic process. Givenahgtgristic wave number for the surface roughness is chosen as

one-sided autospectral densBy(w) for the surface irregularities, K, = VKK, which lies in the middle of thg¢k, ,k,] interval on a

the one-sided autospectral densy(w) for the displacement of logarithmic scale.

the single-degree-of-freedom vehicle can be found. Also, the one-A transformation from wavenumber domain to frequency do-

sided cross-spectral densiy(x1.x2.w) for the beam displace- main is obtained by substituting= w/v into Eq. (22),

ment at two pointg¢; andy, on the beam axis can be calculated. 0, wé[wg,w,]

Thus, see, e.g., Lipl7], ’ %2

Sa(@)=Hzr(@)*Sy(w), (15) MO gy e (23)

w2’ welw, 0] ‘
Suuxrxz,®) =Hiy(x1,0)Huy(xz, ©)Sy(w),  (16) where w,=k;v and w,=kpv. Subsequentlys,(w) is found by
where Hyy(w) and Hyy(x,®) are defined previously and insertion into Eq(15). o . .
HE,(x1,0) is the complex conjugate dyy(x1,®). The prin- In the following an analysis will be carried out for the variance

ciple of superposition is valid, because the governing equatioﬂ% the single-degree-of-freedom mass displacement response,
are all linear. o7=kz(0), and thevariance of the beam displacement response

From the Wiener-Khintchine relation the auto-covariance funélirectly under the vehiclegy = xy,(0,0,0). Due to the linearity
tion k() for the vehicle displacement and the cross-covarian@$ the problemo? and o are proportional tar?. Hence, it is
function «yy(x1.x2,7) for the beam displacement may be exconvenient to describe the respective variances bydgramic

pressed as variance amplification factors
- o o
Kza(T)= f cog 7)Sy(w)dw, ) S=—%, Sy=—o. (24)
0 O'Y O'Y

o " ) A beam with the mass per unit length= 100 kg/m is consid-
kuu(X1,X2:7) =2f (cog w7) STy —sin(w7)Sy)do, ered. The vehicle has the circular eigenfrequengy: 27 s™* and
0 the damping rati@’y=1, which are assumed to be typical values.
(18)  The analysis is performed for different sizes of the point mass,
respectively, wher&},, andS,, are the real and imaginary partsMo= 100, 1000, 10,000 kg, and the characteristic wavelength of
i bending waves and the circular cutoff frequency are both varied.
of Syu(x1.x2,@), respectively.
_ _ o ~ The valuesL,=1, 10, 100 m and.,=0.1, 1, 10 are used. It
2.3 Nondimensional Parameter Description. The dynamic should be noticed that with the definitions in E¢k9) to (21) an
response of the vehicle and beam is self-induced, i.e., no exterp@rease of(}, will imply an increase in bothc and El for con-
load acts on the system. Therefore, only the relative size of tbﬁintl_c, whereas an increaselin only leads to an increase i
system parameters is of importance. Dimension analysis ando@ constant(),.

further study of the system equations would imply that the follow- Figures 2—4 show the dynamic amplification factsysandsy,

ing nondimensional identities govern the problem: as functions of the vehicle velocity in the=[1 m/s,100 m/sin-
® © m v terval. Further to the results obtained using the indicated theory

Qo__ol Qe=—, Mo:—o, y=—, (19) (the continuouscurves, reference result@the dashedcurves are
Oy o Ml Uc shown for a situation where the interaction between the beam and
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Fig. 2 Dynamic amplification of vehicle mass response (=) and beam response (—) at
x=0. The dashed lines indicate the response when interaction between vehicle and beam is
neglected. my=100kg, wo=2m s, u=100kg/m, {,=1 and £.=0.1.

the vehicle is not taken into consideration, i.e., the vehicle dobsth amplification factors as high as 1000 are found. The most
not feel the displacements of the beam, but only the surfadeamatic reinforcement of the response takes place for
roughness. In this case the denominddiw) =(— w?mg+iwc, Me=1000kg,Q.=1 andL,=10m.
+Kkg) is used instead of the original denominator, ELR). A real road structure is typically very stiff in proportion to the
In the reference case with no interactighe dashed curveshe suspension of the vehicle, i.€). andL are very large. Further,
response of the point mass is seen to decrease for increasing aaRlyses show that in such cases the local peaks in the amplifica-
ues ofv beyond 10 m/s. This could be expected sifzg=1 tion curves will move to higher velocities and the interaction be-
whenv=1m/s andw, moves to the bottom of the frequencytween the vehicle and the beam structure becomes less important,
range for the autospectra wher- 10 m/s. For velocities of more as indicated by Cebofil2]. However, for heavy freight trains or
than 10 m/swy lies outside the frequency range. high-speed passenger trains running on soft soil layers or rubber
When interaction of the vehicle and beam is taken into accouti@mping devices in metro tunnels, a low stiffness of the beam and
the response of both the single-degree-of-freedom mass and sbipport relative to the stiffness of the vehicle may be expected.
beam is almost unchanged, if the spring stiffness of the Kelvidence, the interaction may be of significant importance in the
foundation and the bending stiffness of the beam is sufficientnalysis of such problems.
high. This also applies to the single-degree-of-freedom mass refor {,=1, i.e., critical damping of the vehicle, Figs. 2—4 show
sponse when the stiffness of the beam and support is very low.that in most cases there is no amplification of the single-degree-
this case the beam response is, however, not estimated correctlgfifreedom mass displacement response beyond the displacements
the reference calculation at low velocities. As seen from the fighrectly corresponding to the surface irregularities. Also it may be
ures the deviation grows with an increasengy. noticed that an amplification of the single-degree-of-freedom
For some configurations of the beam and support other than thass response will only take place in conjunction with an ampli-
aforementioned there is a general amplification of the responsefigaition of the beam displacement, though an amplification of the
both the single-degree-of-freedom mass and the beam, as long@am response may not necessarily lead to an amplification of the
the velocity of the vehicle lies beneath a certain value. The arsingle-degree-of-freedom mass response.
plification tends to become stronger when the single-degree-of-To test whether the same feature applies when the vehicle is not
freedom mass is increasing and the velocity, where the amplificztitically damped, the system response has been analyzed for vari-
tion drops off, at the same time becomes smaller. However, ads combinations of the damping ratigsand/, . The remaining
increase of the bending stiffness of the beam leads to an increasgameters of the system are kept constant with the following
of the velocity where the dropoff appears. Hence, the dropagfarameters being used:
velocity for my=1000kg, O.=1 andL.=10m is almost the -
same as the dropoff velocity fomy=10,000kg, Q=1 and Mo~ 1000 kg, wo=2ms", p=100kg/m, Q=10, L=10m.
L.=100m. (25)
Another interesting feature of the response is that for certainThe results of the analysis are illustrated in Fig. 5. As it could
combinations of beam configurations, point mass and velocitid®e expected, the dynamic amplification of the single-degree-of-
the beam response, and in some cases also the single-degreér@édom mass displacement increases significantly when the
freedom mass response, is amplified drastically. Hence, valuesdaimping ratiol, is decreased. There is almost a one-to-one cor-
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respondence between{}/ands;, for velocities close to 10 m/s. unchanged from the situation where interaction is neglected. The

Here the eigenfrequenay, lies near the lower bound of the fre-beam response is, however, estimated incorrectly in this situation

quency interval for the autospectra where the major part of tighen interaction is not taken into account.

variation in the surface irregularities is present. For the given autospectrum of the surface roughness, some con-
However, the curves in Fig. 5 indicate that for velocities beyonigurations of the beam and support along with the velocity of the

10 m/s an increase of the damping ratio of the vehicle is a disagehicle may prove critical. Thus, even for a vehicle, which is

vantage, especially when the damping in the support is relativeljtically damped, a significant amplification of the order® 10

low. Thus, some quite significant peaks arise for the combinatighe surface roughness may take place. Resonance of the vehicle as

¢o=1,{;=0.01 in the intervab~40 to 60 m/s. At these veloci- 5 isolated system is not the main problem in this case, which

ties the eigenfrequency of the vehicle lies way below the bottofjyicates that for a vehicle moving on a structure, which may

frequency of the autospectrum for the surface roughness. He'llﬁ?eract with the vehicle, the mechanical design of both vehicle
the origin of the peaks must be resonance in the beam.

. . L d structure is of great importance. Actually, it has been found in
{.=0.01 a peak is still present, though it is less pronounce 9 P 4

However, when both the vehicle and the beam are critical e analysis that a reduction of the damping in the vehicle may

damped, the peaks have vanished. Here the interaction has.r{gove beneficial at high velocities. Nevertheless, when the damp-

influence on the displacement response of neither the sing'le- of the_vghlcle S reducgd, the dynam_lp amplification (.)f the
Sponse is increased drastically at velocities where the eigenfre-

degree-of-freedom mass nor the beam for the entire velocity rarﬁj . . o
consideredthe dashed and continuous curves coingide ency of the single-degree-of-freedom system lies within the fre-
d. guency range of the autospectrum for the surface roughness.

In practice vehicles ardclose t0 being critically dampe L . . .
However, depending on the material of the underlying structure itThe analysis indicates that the interaction between the vehicle

seems likely that, will be of the order 0.01 to 0.1. This means@nd beam structure should not be neglected in the analysis of, e.g.,

that a strong displacement amplification will actually occur at 38avy freight trains running on a railway track structure with a
certain critical velocity of the vehicle. low bending stiffness and a low cutoff frequency. Also it should

be noticed that neglecting the interaction in the derived analytical

. method does not make the calculation of the displacement ampli-

4 Conclusions fications any simpler. Anyway, the terms of the beam displace-
The response of a single-degree-of-freedom vehicle movitfigent that influence the vehicle mass displacement must be found,
uniformly along an Euler beam on a viscoelastic foundation dfthe beam displacement under the vehicle should be determined.

Kelvin type has been investigated. Only the stochastic part of theAn analysis of a realistic vehicle requires a model with more
response due to random surface irregularities has been considefiegrees-of-freedom and contact points along the beam. For the

The analysis shows that when the beam and support are redéngle-degree-of-freedom vehicle it is relatively simple to put for-
tively stiff compared to the suspension of the vehicle the influenaeard the frequency response matrix for both the vehicle itself and
of interaction between the beam and vehicle is insignificant. Thigr the beam. Already when a two-degree-of-freedom vehicle in
is in accordance with the assumptions mad¢lify. Also, when contact with the beam at two separate points along the structure is
the beam and support are relatively soft, the vehicle response goessidered, however, the interaction of the vehicle and the under-
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lying structure becomes far more complicated. Hence, an analyti- Beam Subjected to Poissonian Moving Loads,” J. Sound \i8g No. 4, pp.

- . . - 479-495. .
cal approach is inconvenient. For a vehicle with even more[?] Sniady, P., Biernat, S., Sieniawska, R., angkd@wski, S., 2001, “Vibrations of

degrees-of-freedom only a numencal solution may _be found. Dis- the Beam due to a Load Moving With Stochastic Velocity,” Prob. Eng. Mech.,
crete frequency response functions may be determined using, e.g., 16, pp. 53-59.
a finite element scheme. A finite element formulation of the prob-[8] Yoshimura, T., Hino, J., Kamata, T., and Ananthanarayana, N., 1988, “Random

lem with a moving load on an infinite Euler beam-Kelvin founda- Vibration of a Non-linear Beam Subjected to a Moving Load: A Finite Element
. . . . Analysis,” J. Sound Vib.122 No. 2, pp. 317-329.
tion system in the moving frame of reference has previously beerﬂQ] Fryba, L., Nakagiri, S., and Yoshikawa, N., 1993, “Stochastic Finite Elements
suggested by Andersen et EL6]. for a Beam on a Random Foundation With Uncertain Damping Under a Mov-
ing Force,” J. Sound Vib.163 No. 1, pp. 31-45.
[10] Chang, T.-P., and Liu, Y.-N., 1996, “Dynamic Finite Element Analysis of a
ACknOW|edgmentS Nonlinear Beam Subjected to a Moving Load,” Int. J. Solids Stri83,,No.
The participation of L. Andersen and S. R. K. Nielsen in the iz, PP 1t57§—1|3680- o G and Clouteat. b.. 2000. “Numerical Modeli
; : '{g] ombaert, G., Degrande, G., and Clouteau, D., , “Numerical Modelling
present researCh _ha_s been su_ppo[ted by.The DamSh. TeCh.mcal of Free Field Traffic-Induced Vibrations,” Soil Dyn. Earthquake Eri@, No.
search Council within the project “Damping Mechanisms in Dy- 7 o 473_488.
namics of Structures and Materials.” [12] Cebon, D.,(1993, “Interaction Between Heavy Vehicles and Roads,” Tech-
nical report, Cambridge University Engineering Department, Cambridge, UK.
[13] Metrikine, A., and Vrouwenvelder, A. C. W. M., 2000, “Surface Ground Vi-
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Intersonic Crack Propagation—
Part II: Suddenly Stopping Crack

In Part | of this series, we have obtained the fundamental solution for a mode Il intersonic
crack which involves a crack moving uniformly at a velocity between the shear and

Y. Huang longitudinal wave speeds while subjected to a pair of concentrated forces suddenly ap-
Department of Mechanical and Industrial pearing at the crack tip and subsequently acting on the crack faces. The fundamental
Engineering, solution can be used to generate solutions for intersonic crack propagation under arbi-
University of lllinais, trary initial equilibrium fields. In this paper, Part Il of this series, we study a mode Il

Urbana, IL 61801 crack suddenly stopping after propagating intersonically for a short time. The solution is

obtained by superposing the fundamental solution and the auxiliary problem of a static

H. Gao crack emitting dynamic dislocations such that the relative crack face displacement in the
Division of Mechanics and Computation, fundamental solution is negated ahead of where the crack tip has stopped. We find that,
Stanford University, after the crack stops moving, the stress intensity factor rapidly rises to a finite value and

Stanford, CA 94305 then starts to change gradually toward the equilibrium value for a static crack. A most

interesting feature is that the static value of stress intensity is reached neither instanta-
neously like a suddenly stopping subsonic crack nor asymptotically like a suddenly stop-
ping edge dislocation. Rather, the dynamic stress intensity factor changes continuously as
the shear and Rayleigh waves catch up with the stopped crack tip from behind, ap-
proaches negative infinity when the Rayleigh wave arrives, and then suddenly assumes the
equilibrium static value when all the waves have passed by. This study is an important
step toward the study of intersonic crack propagation with arbitrary, nonuniform
velocities. [DOI: 10.1115/1.1410936

1 Introduction velocity v is less than the Rayleigh wave speeg. Using a
. . different analytic method, Willi$10,11] obtained the solution for
Freund[1] used the Wiener-Hopf method to obtain the funda: . o e . .
mental so[lu]tion for mode | dynar?ﬂc crack propagation. A Semp_onunlform cra}ck growth in the entire sybsomc range, i.e., the
infinite crack in an infinite solid was subjected to a pair of co:ﬁ::ﬁktﬂg s\/ﬁ(l;;(;lt,)\//a(\:/inseégzed the Rayleigh wave speed but less
centrate normal forces suddenly applied at the crack tip at time h dv i peed. db . .
t=0, and at the same instant the crack tip started to propagate @ present study Is motivated by recent experiments on inter-

a constant velocity. This fundamental solution can be used tosgl ic crack propagation by Rosakis et E2,13 who investi-

. . : ated shear dominated crack growth along weak planes in a brittle
construct the general solution for dynamic crack propagation SL%

. . L e . . . olyester resin under far-field asymmetrical loading. They ob-
ject to arbitrary initial equ_lllbrlum field[2]). M_ore importantly, it served that the crack-tip velocity not only exceeded the Rayleigh
can also be used to obtain the general solution for crack growth E%]t
nonuniform crack-tip speed3]). This is because that, once the? ddshelar wave spe&?ds;Ea_r:jd Cs, bl;t ?IISO apprcl)(ached the lon-

; e o . tudinal wave speed; . Evidence of shear crack propagation in
crack tp suddenly stops propagating, the dynamic stress intensl ess of the shpear V\llave speed has also been grosidgd from ob-
factor instantaneously reaches its static counterpart for the sa ‘?vations of shallow crustal earthquakgs4—17). There are

metry and loadin . A mor neral conclusion h n . ; ; .
geometry and loading 3 ore general conclusion has bee also analytical and numerical studies on various aspects of shear

esablshede.g, [24) that the sress mensty factor around 410 oY G2 FT L ooote D oL e i et
y Y propagating P Py P planes, such as the stress singularity and stability regime in iso-

t(Loer ;[:frlgcskatrirg)ev(;rli(éli(t)lleng)tmnultlplled by a universal functiok of tropic solids ([18—-21)) and orthotropic solidg[22,23)); crack
' propagation at a constant velocity subjected to uniform shear on
crack facedq[24]); radiation-free crack-tip velocity and relations
K(a,a)=k(a)K(a,0), (1) with intersonic dislocationg[25]); slip-weakening or cohesive
models([26—-29) and atomic simulationg 30,31]) of intersonic
wherea is the crack lengtha is the crack-tip velocity, the univer- fracture.
sal function k is approximately given byk(v)=(1—v/cg)/ The aim of this paper is to extend Freund’s analygls3]) for
JV1—-vl/c,, andcg andc, are the Rayleigh and longitudinal wavesubsonic crack growthu(<c) to intersonic crack propagation
(cs<wv<c;). The fundamental solution for intersonic shear crack

speeds, respectively. ?opagation was obtained in Part | of this pa&2]). A pair of

The corresponding mode Il analysis was reported by Foss ; .
and Freund5), and the approach was also generalized to oth nceEtrate shear forces was suddenly applle_d at the crack tip at
ime t=0, and at the same instant the crack tip started to propa-

cases of loading 6-9]). It should be pointed out that these analy- ate at a velocity between the shear and longitudinal wave

ses hold strictly for sub-Rayleigh crack growth, i.e., the crack-ti heedse, andc, . It was established that only at a single crack-tip
_— velocity of v =v2c, the crack tip has the square-root singularity,

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF and the Cl’aCk-tIp ene_rgy release rate at this V(_ElOCIty IS sllght_ly less
MECHANICAL ENGINEERSTor publication in the ASME GURNAL oF APPLIEDME-  than one quarter of its counterpart for a stationary crackftp
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 13the same crack lengthThe present study focuses on an intersoni-
2000; final revision, May 30, 2001. Associate Editor: L. T. Wheeler. Discussion agally propagating shear crack tip that suddenly stops moving. This

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departi : f ; ;
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, arr%%mdy prowdes answers to two |mportant but interrelated questlons

will be accepted until four months after final publication of the paper itself in th@N imersonic crack pro_pagation._ First,_ once the_ crack tip stops
ASME JOURNAL OF APPLIED MECHANICS. moving, will the crack-tip stress intensity factor instantaneously
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reach its static counterpart as in subsonic crack grajt8])?
Second, the solution for nonuniform subsonic crack growth can be e
obtained from that for uniform crack growti1,3]). Does this ( 1) —ex 1f s
conclusion hold for intersonic crack propagation? Unfortunately, 0

the answer to both questions are negative, as shown in this paper.

2 Suddenly Stopping Crack y cr/\cs dr )
The fundamental solution is given in Part | of this pafd&2]) op2 : 1|
for an infinite linear elastic solid containing a semi-infinite crack cs w

on the negativex axis. For timet<0, the solid is stress free and at
rest everywhere, and the crack tip is at the ori@rD). At time
t=0, the crack tip begins to move intersonically at a constant2.2 Crack-Face Sliding Displacement in the Fundamental
velocity v (cg<v<c,) in the positive x-direction. As the tip Solution. It is established in Part | of this papg2]) that the
moves away, a pair of concentrated shear for¢as the sliding displacement across the crack face in the fundamental so-
x-direction of constant magnitude* is left at the origin. In the lution, é=uy(X<vt,y=0+)—uy(x<vt,y=0-), depends on
present study, the loading, geometry and crack-tip motion are tti@e t and coordinates only through their ratiod/t,

same as those in the fundamental soluti82]), except that the

crack tip suddenly stops moving at tihe t* after propagating a

distance ofvt*. This suddenly stopping crack problem can be X

decomposed into the following two problents; the fundamental d(x<vt,t)= 5( f)' ()
solution that persists far>t*, i.e., crack tip continues to propa-
gate after timet*; and (ii) the negation of the sliding displace-
ment across the crack face in the fundamental solutiow forx
>ypt* by emitting dislocations from the crack tip along>0y
=0 in just the appropriate sequence. Fre(id] also used the
moving dislocation solution to determine the dynamic stress in-

tensity factor due to normal impact loading on the crack faces. o(w)= P PVL/@,H)

wherev is the crack-tip velocity, and is given by

1U(v—w)
Im[U_(5)]dypH(w+c). (7

2.1 Solution for a Moving Dislocation. An infinite linear
elastic solid contains a semi-infinite crack on the negatie&is. oreH is the unit step functionPV stands for the Cauchy prin-
For timet=<0, the solid is stress free and at rest everywhere, ara‘:g

the crack tip is at the origif0,0). An edge dislocation is emitted 7Cal) Vaarlléell/ztigga)l 2%?2%5?@%%@? E;n;;;lg poles at (
from the crack tip at timé=0, and propagates along the positive R R
x-axis at a constant velocity less than the longitudinal wave
speedc, (therefore including both subsonic and intersonic re- .
gimes. Freund[2,33] used the Wiener-Hopf method to solve the MU (7)]= @ 7" S4(7) (1-0 )\/an( 7)
above problem with an edge dislocation climbing in the -\ cﬁ 1 K ! K Fa(n)’
x-direction, leading to a mode | crack tip. The solution for an edge S+ o
dislocation gliding in thex-direction, corresponding to a mode Il ®)
crack tip, is provided in this section to pave the way for analyzing
a suddenly stopping crack in the following sections.

The boundary conditions can be written as 7* is the concentrated shear force on the crack face in the funda-

mental solutionu is the shear modulus,

ay,(X,y=01)=0,

Ty (X<0y=01)=0, @) Fa(m)=47*V(c;—v)n+1y(ci+v) p—1[(v—cs) n—1]
1 2
U (x>0y=0t)=bH(wt—x), X[(v+cyn—1]-cicq 29*— Ez(v n—1)%
whereb is the Burgers vector, and is the unit step function. °
Since the analysis is nearly identical to that for modg2133)), X\1=(v—Ccg) (v +Cy) n—1H[1—(v—Ccq) 7]
we only provide the final solution of the crack-tip stress intensity XH[ (v +cg) 7—1], )
factork, ,
ki1 =bko(t,w), 3)

_ _ Fa(n)=167"(c;—v)n+1][(c;+v)p—1][(v—cs) n—1]
where the linear dependence on the Burgers vebtis made

explicit, andk, is a function of timet and dislocation velocit 1 ¢
givpen by W X[(v+cgn—1]+clcg 27° = Z(vn=1)| , (10)
S
w
1+ — B . 71
et = -2 1 cs cr__ 1y [2 " s.(7) :exp[_vn 1f an "Vl 1
W)=~ -5 |—/—S-| ~=| \\ =% :
° # cf w ° w Twt s+(l ™ -0 +1)(r+7)
1+ — v
CS
w is the shear modulus, and and
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2

1
2r’— — (vr+1)?
CS

4r2\/(c|—v)r—1\/(c|+v)r+1\/(v—cs)r+l\/(v+cs)r+1.

CiCq

V(r)= (12)

The crack-face displacement depending only on the rafio where the right-hand side is the stress intensity factor for a static
implies that any given displacement lev&w) = 5(x/t) radiates crack tip subjected to a pair of concentrated shear for&eat a
out along thex-axis at a constant spead=x/t ([2,33)). As dis- distancevt* on the crack faces behind the tip. It is also interesting
cusse_d in the next _sectio_n, this has ir_nportant implications on _tﬂffstudy the other limitt—t* +0, i.e., immediately after the crack
negation of the sliding displacement in the fundamental solutiqfy stops moving. For crack-tip velocity#v2cs, stresses around
by the moving dislocation solution. an intersonically propagating crack tip changes from a weak sin-

gularity (r~9,g<1/2) ([18,21-23,25,3R to the conventional

2.3 Stress Intensity Factor Around a Suddenly Stopping square-root singularity.r(l’z) as the crack tip .suddenly stops
Crack. The method used to determine the stress intensity factOPV'n9, bu} the stress mt_ensny faCtoanS) remains zero at t.h's
in this section is same as that developed by Frd@y@3). At any nstantt=t*. For crack-tip velocityp=v2cs, the propagating
instantt>t*, the sliding displacement needs to be negated froFﬁack tip also has the square-root singularity, and the stress inten-

the current crack-tip positior=ut in the fundamental solution to SIty factor in (15 does not vanish at=t*, but becomes 0.68
es the equilibrium valueK () for Poisson’s ratiov=1/3.

e . .
o I Erack 1D 12 sphose 1o 2108 MOV, THihcsectsenadons mply i comtary (0 subsonic ac routh
: : . g : ._the dynamic stress intensity factor does not reach its static coun-
welocy I e enge, he e ot uhieh he cotesporc it insaniancously once an nersonicaly propagaing crack
locationx=pt* is tip suddenly stops moving. In fact, this is quite ree_tsonablc_e becaus_e
both shear and Rayleigh waves are trailing behind the intersoni-
cally propagating crack tip. As the crack tip suddenly stops propa-
¢ :ﬁ (13) gating at timet=t*, the time for the shear and Rayleigh waves to
woowT reach the stopping crack tip are vt*/c; andt=vt*/cg, respec-
tively. It will be interesting to examine the stress intensity factor at

The stress intensity factor due to a moving dislocation startinge “siopping crack tip after all waves have passed, te.
to propagate at=0 with velocity w and Burgers vectob is > pt*/cg T

bko(t,w), as given in(3). If a dislocation with Burgers vectats Figure 1 shows the stress intensity factof in (15) for a
begins moving at timé=t,,, instead of at=0, then the stress g,4qan1y stopping crack tip for three crack-tip velocitiedg,
intensity factor isko(t—t,, ,w)dé. Since bothdin (7) andt, in  _4 9 "\5 and 1.7, wherek,, is normalized by its equilibrium
(13) are prescribed functions of, the stress intensity factor CanvalueK”(oc), and timet is normalized by the crack propagation
. . -
be summed from;. to vt*/t W't_h respect tow. S*tresses in the time t*. Once the crack tip stops moving, the stress intensity
fundamental solution are not singular aroundvt* because the tacior rapidly increases to a finite value, and then starts to de-
current crack tip already propagatesdeuvt. In other words, only craase. A sharp vertex in the figure corresponds to the arrival of
the moving dislocation solution contributes to the stress intensify, chear wavetE ut*/c,). The stress intensity factor approaches
e o s)-
factorK,, at the stopped crack tip=vt*. This givesK, as to negative infinity once the Rayleigh wave arrives=(t*/cg
—0). However, immediately after the Rayleigh wave arrives (
ut* it ds =vt*/cgt+0), the stress intensity factdt,, reaches its equilib-
Ku()=- JU kO(t_tW'W)W\,dW' A4 rium valueK (). This indicates that, even though the dynamic
stress intensity factor does not reach its equilibrium value instan-
The substitution of7) and (13) into (14) and the change of inte- taneously once an intersonically propagating crack tip suddenly
gration variable top=1/(v —w) give the analytic expression of stops moving, the equilibrium value is reached after all waves
the stress intensity factor at the stopped crack tip as have passed. In other words, the stress intensity factor around a
suddenly stopped intersonic crack tip displays a finite delay in

2 reaching its static counterpart, contrary to the case of subsonic

K (t)=— /E 2_'“ _ E v crack growth. It also behaves different from a suddenly stopping
I T wCR c? dislocation, for which the corresponding static dislocation field
is approached only asymptoticalli.e., as time approaching
JW (v+cr)np—1 infinity).
X
Mot o (t—t*) p—tV(v+cg) p—1 3 Concluding Remarks

7 In Part | of this papek[32]) we obtained the fundamental so-
- —) Im[U_(»)]d7, (15) lution for an intersonically propagating crack subjected to a pair
vp-1 of suddenly applied concentrate shear forces on the crack faces. In
wherePV stands for the Cauchy principal value integral becaugB® present study we have studied the crack-tip behavior and stress
of the possible Cauchy-type singularity aroundvi(cg), and Intensity factor when the intersonically propagating crack tip is

X So—

so_ and InfU_] are given in(5) and (8), respectively. suddenly arrested. It is established that, unlike subsonic crack
It can be shown, after some lengthy calculations, that the stréf®Wth ([(1-3)), the dynamic crack-tip stress intensity does not
intensity approaches its equilibrium limit as tirhes + o, instantaneously reach its equilibrium value when an intersonically
propagating crack tip suddenly stops moving. The equilibrium

stress intensity factor is reached after a finite delay, i.e., after all
K, ()=7 / 2 (16) (shear and Rayleighwaves have passed the stopped crack tip.

. mot*’ Because of these observations, one cannot obtain the solution for
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Fig. 1 The stress intensity factor, K,/, around a suddenly

stopped crack tip that was propagating intersonically;

Ky(e) is

the equilibrium value of the stress intensity factor; time tis
normalized by the crack propagation time t*; Poisson’s ratio
v=1/3; the crack tip velocities are (a) v=1.1cg, (b) v=V2c,,
and (c) v=1.7c, respectively, and c; is the shear wave speed

Journal of Applied Mechanics

nonuniform intersonic crack propagation from its counterpart for
uniform crack growth, as suggested by Freund for subsonic cracks

([2.3)).
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Elastic Solutions for a Solid Rotating lyze thermal stress state insmlid disk ([12]). Their method is

. . . . limited to weak anisotropic material and is also an approximate
Disk With Cubic Anisotropy method. P PP
In our group, centrifugal spin experiments have been performed
1 to test the bursting strength of plain-woven d0d90] laminated
F. Zhou® and A. Ogawa C/C composites. The specimens are thin annular ring disks. The
Aeroengine Division, National Aerospace Laboratory, finite element method was used to evaluate the experimental re-
7-44-1 Jindaijihigashi, Chofu, Tokyo 182-8522, Japan  sults([13]). We also used the Ritz method to analyze the problem.
Though no exact solutions were obtained fimgs, we found that
for a solid, cubic anisotropicrotating disk, simple closed-form

) . . . . ) elastic solutions exist. The results are reported below.
Elastic solutions of a rotating solid disk made of cubic anisotropic

material are obtained using direct displacement method. Dis;

placement, strain, and stress distributions within the disk are ek- Formulation
pressed as simple functions of polar coordinates. The problem is illustrated in Fig. 1. The disk, with radRsind
[DOI: 10.1115/1.1406958 densityp, is rotating at angular speead Cartesian and polar co-

ordinate systems are established, with ¥aaxis as one material

principal direction. The disk material is cubic anisotropic with

Young's modulus:E,=E,=E; shear modulus:G,,=G; and

Poisson’s ratiov,,=r,,=v. More general, we assume that the
1 Introduction disk is loaded by a uniform external tensile stregs which may

. . . . come from the tension of blades attached to the disk.
Rotating disks are important structural components in turboma-

chinery or flywheel systems. Finding elastic solutions of a rotating
disk is always a critical issue. The problem of isotropic disk is
quite simple([1]). If the disk is anisotropic, the problem become: f =
complicated. Two typical anisotropy forms are cylindri¢ablar T R
orthotropic and CartesianX(Y) orthotropic. In the former case, P
closed-form solutions are obtainable because the deformation j
the disk is cylindrically symmetri¢[2—8]). In the latter case, the
seemingly simple problem turns out to be difficult to solve. Ther
were some works dealing with the Cartesian orthotropic dis
problem ([9,10]), where the stress functions of Lekhnitskiil]
were used as the start point of the analyses. Closed-form solutic
were obtained only for some special cases.

Among the general Cartesian orthotropic materialghic an-
isotropicmaterials are a special category. These materials have
same elastic property in the material principal directions. Son
examples of cubic anisotropic materials are cubic single cryst:
and balanced crossply @90];) laminates. Even for this simple
type of anisotropy, solutions are still difficult to obtain. Recently
Vigdergauz, and Givoli presented a perturbation method to ar

L]

Goy=G=aE/2(1+v)

Wap=%
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We limit the problem to the plane stress case. The case of plamkerea, b, c are unknown constants. At the disk centgrandu,
strain can be treated similarly when certain transformations afe zero, omitting possible rigid translation. By direct differentia-
elastic parameters are made. Because of material anisotropy, tthe, the strain and stress expressions are deduced. It is seen then
displacement components in radial and hoop directigrendu, that the second equilibrium E@3.2) is automatically satisfied.
are functions of polar coordinates, §): The other equilibrium Eq(3.1) and the boundary conditior(g)
lead to four algebraic equations for three unknownb, ¢. How-

Ur=u(r,0),  Up=uy(r,6). ever, two of the four equations are identical, so that we get deter-

The strain components in polar coordinates are minate solutions for the unknown constants
% (1= »)(1+2a+v)pw’R? 1—v
e ar - 2E(1+3a+v—av) * g 70
U, du,
;:9 = T+% . 1) e (1-1?)(1+ a)pw? ©)
du,  duy U, 4E(1+3a+v—av)
a6 ar T

1)1 a)pe?
€= 12E(1+3a+v—av)’

Cubic anisotropic materials have three basic elastic parameters.
The constitutive relationship in Cartesian coordinates is

Combining Eqgs.(5) and (6), we get explicit expressions for
displacementtomponents, and hencstrain and stresscompo-

Ox €x Ex "
~ E v 1 0 nents. These quantities are expressed as
Oy =Eo) &y | =7 2 By (.
1-v (1-v9)G 2
o el 00 —— ' _ e et )R (14 @) (14 )2
ur_4E(1+3a+V*av) ( atv) (I+a)(d+w)r
In polar coordinates, the constitutive relationship is
(1-a)(1+v) ) —v
o, e, £ Cir Cro Crs e, + Tr cos 40|+ E oof
oo =E(0)y €0 = (1=9) Cos Cos|| €0 (. , , (1)
Tro Yro Sym. Ceg] \ Vro U,=— (1—)(1-a)pw résin 46
2 7 12E(1+3a+v—av)
The elastic matri>d~5(0) is symmetric. Its elements are expressed (1-v)pw?
as follows: = 2_ 2
g, AE(1+ 3atr—av) [2(1+2a+v)R*=3(1+a)(1+v)r
Cr=Cypyp=3+ta+(l-—a)rv+(l—a)(1l—wv)cos 40
2 (1_ V)UO
Cro=—1+a—(3+a)v+(1—a)(1—v)cos4d +(1-a)(+y)rocos ]+ ——
Cis=—(1l—a)(1—wv)sin46 )
i N ko 2(1+2a+ »)R2—(1+ a)(1+v)r2
Cos=(1—a)(1-v)sin40 0= AE(15 3a+ v—ay) 2L T 2atVIRE (I a) (1t w)r
Css=(1—v)[1+a—(1— a)cos 4] , (1-v)ag
where the parameter=2(1+v)G/E represents the anisotropy of ~(A-a)(1+w)ricos 4]+ —¢ ®)
the material. For an isotropic material=1, E(0) =E,, meaning
that the material properties are identical in all directions. For a (1= (1—a)pw’r
crossply laminatedor woven composite« is smaller than 1; for U = p————Ld
a single crystal superalloy is larger than 1.
The equilibrium equations are (1+2a+ v)(R2—r?)
- 2
o= pwtoy
Jdo aT, o —0 " 2(1+3a+v—
L L petr=0 (3.1) (1+3a+y=av) ©)
ar  radl r
_(1+2a+ »)RP—(1+v+2av)r?

pwl+ay, T=0.

dog JTg 2Ty

76~ 2(1+3a+v—av)

T o =0, (3.2) (

These functions simultaneously satisfy governing Edjs-(3)
and boundary conditiof). They are therefore the required elastic
solutions for the present problem. For isotropic materiats/1,
Egs.(7)—(9) render the same results as those givefilin
. : : : From Eq.(9), it is seen that shearing stress componenjsis
3 Solutions for a Solid Rotating Disk zero everywhere within the disk; the normal stress components

If the disk is solid, i.e., no internal holes exist, there is only onare independent of the coordinateThis means that, although the

We wish to find the functions{u,,u,}, {o,,04,7,¢} and
{er,e4,7r¢} that simultaneously satisfy Eq¢l)—(3) and other
boundary conditions.

boundary ¢=R), on which the stress conditions are deformation of the disk is not cylindrically symmetric whert 1,
the stress distribution within the disk is always cylindrically sym-
o (R,O)=09, 74(R,0)=0. @) e, ys &y y sy
Based on experience, we propose that the displacement compoFhe maximum stress values appear at the center of the disk.
nents take the following form: When the external loadingy is omitted, these values are
— 3 3
u,(r,0)=ar+br3+crdcos 40 5) oo :(1+2a+v)pw2R2 )
Uy(r,0)=—crsin 46 rimax AR 6ImexT o1 + 3+ v—av)
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When a=1, we geton.(iso)=(3+v)pw?R?8, a formula fre- A New \Wave Technique for Free
quently given in design handbooks.

We define the maximum stress rafioas Vibration of a String With
Time-Varying Length

_ Oma{anisg 4(1+2a+v)
T omalis0)  (1+3atv—av)(3+v)’

(11)
S.-Y. Lee

For ordinary cubic anisotropic materials>0, «>0. The varia- Associate Professor, Department of Mechanical

tion of the 8 value in this region is not significant. The maximumgngineering, Sogang University, Sinsudong, Mapoku,
stress ratio varies between values &®—«, »—0) and 4/3 Seoul 121-742. Korea

(20, »=0). e-mail: sylee@sogang.ac.kr. Mem. ASME
) M. Lee
4 Concluding Remarks Associate Professor, Department of Mechanical

Although the solutiong7)—(9) are identical to the results of Engineering, Sejong Uni\/ersity, Kunjadong, Kwanjinli,
Chang[14], we obtained these results by an alternative, MOEa ol 143-747. Korea. Assoc. Mem. ASME
3 , . . .

direct approach. In our approach, we do the analysis by followin

steps:
1. Assume the type of displacements functions, which contaje introduce a new technique to analyze free vibration of a string
unknown coefficients. , with time-varying length by dealing with traveling waves. When
2. Deduce the strain and the stress functions. the string length is varied, the natural frequencies and vibration
3. Substitute the stress function into equilibrium and BC equ@nergy are not constant. Thus, free response is not represented by
tions, to determine the unknown coefficients. discrete standing waves but by traveling waves, and a given phase
4. Confirm that all governing equations are satisfied. of oscillation travels along the string. String tension and nonzero

If the disk is not solid, i.e., there is a hole in the center, then tHBStantaneous transverse velocity at the moving boundary results
inner boundary and the outer boundary influence on each other.lAsnergy variation. When the string undergoes retraction, free
a result, the stress field within the ring is distorted, and it is im¢Pration energy increases exponentially with time, causing dy-
possible to find simple displacement functions that satisfy all goP&mic instability. The new wave technique gives the time-varying
erning equations. For the ring problem, the approximate analydgural frequency and the exact amount of energy transferred into
based on variation theorfinite element method or Ritz methpd the vibrating string at the moving boundary.
are effective. The analyzing steps outlined above can be ea§Rp|: 10.1115/1.1427337
adapted for Ritz analysis, only that the unknown coefficients are
determined by the minimum potential theory instead. Moreover,
the displacement functions of the solid disk problem, nant®ly 1 |ntroduction

provide good hints for assuming the deformation shape of the ring _ o )
Strings and beams, with time-varying length, are the common

([15)). ;
models of many mechanical systems such as ropes of elevators,
mining lifts, and type-supporting wires of typewriters. Time-
dependent continuous models are often used for precise mechani-
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similar system using the image method. Terumichi e{ 2] in- 1 1
vestigated the free response of an axially moving string with timew(x,t) = A sinkx coswt = EA sin(kx— wt) + EA sin(kx+ wt).
varying length and a mass-spring boundary; that is the common 3)
model for an elevator system.

In this paper, the time-varying natural frequency and energy of
free vibration of a string with variable length are investigatetiiere the first and second terms of the right-hand side indicate the
using traveling waves. By calculating the frequency variation ariight-going and left-going traveling waves, respectively. Wave
energy transferred while traveling waves reflect from the movirgmber isk=w/c and the wave propagation speedcis (P/p.
boundary, we derive the exact solutions for the time-dependdp@nsider the string motion with two opposite traveling waves
frequency and energy. with different frequenciesp, and w, . Using trigonometric iden-

tities, the wave motion becomes

1 1
2 Free Vibration Analysis w(x,t)= 5 Asin(kx—ot)+ 5 Asin(kx+ ot)
2.1 'The Equgtior) of Motion.. A string .with time-yarying @, — o) o+ o)
length is shown in Fig. 1. The linear equation of motion for the =Asin kx— t|co t (4)
transverse vibrationy(x,t) of the string is 2 2
Equation(4) describes that free vibration by the two waves with
Pw Pw different frequencies is no longer represented by standing waves.
Pz~ Pz =T(xb. (1) 1tis seen that the phase is not constant along the string, and there

is a phase shift between any two points. A given phase of oscilla-
. ) . . tion travels downstream at a speedl, - w)/2k if w,>w, or up-
Here the string tensio and linear density, are constant, and stream ifw,<w,. The speed is generally described as phase
f(x,t) is external distributed force. Both boundaries are verticallyyopagation speed

fixed, but the right boundary moves at a constant velagityhe
time-dependent boundary conditions are 2.3 Time-Varying Natural Frequency. Figure 2a) shows
that an initial standing wave of the fundamental frequency at
=0 is decomposed into two equal but opposite traveling waves.
When the right-going wave is incident on the moving boundary,
the reflected wave has a different frequency. As shown in Fig.
where the string length ift) =1y*vt. 2(b), the changed wave frequency is less than the incident one,
. . o . when the string is being lengthened. The string motion at the
2.2 Standing and Traveling Waves. In the infinite string jnstant is a superposition of the two traveling waves with different
problem, all frequencies are permissible in free vibration. HoWrequencies. The phase of the superposed motion of the original
ever, for a finite string with boundary conditions, free oscillatiop nq reflected traveling waves lags behind that of the original two
is described by standing wavesatural modeswith discrete fre- onhosite traveling waves. Thus, it is similar to the case of(x.
quencies. In general, a standing wave can be decomposed into {i4 the superposed wave motion is described as a phase-traveling
equal but opposite traveling waves, wave where a given phase of oscillation travels downstream.
However, in this case, both wave number and frequency change
during reflection at the moving boundary. When the string length
is decreased, a phase of oscillation travels upstream.

w(0t)=w(l(t),t)=0

w(x,1) fx) Figure Zc) shows how the wave motion recovers its original
/T\ ?T TTT phase after a cycle. As the initial left-going wave is reflected from

- x=0, the reflected wave keeps its original frequency. When this

,A,, wave propagates and reflects from the moving boundary
x=0 x=i =I(t), the wave frequency changes. At this time, all traveling
waves have the same frequency, and all the points of the string
Fig. 1 String with length varying at a constant velocity v recover their original phases.
(a) 1" mode at =0 traveling wave 1 traveling wave 2
ﬂ _’ 2.5 vTn

(b) string motion at7=0.5 T;
g

= <
vTu
(c) 1" mode at =T}, >
<« —»
= + 3
X x X \E X ~

Fig. 2 Traveling wave pattern of the fundamental vibration mode over a
period
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4.0 T T T T T

—— Increasing length

35| —o— Decreasing length 7

w(x,t)

T1nl T11

1.0 t=0.5T ¥
"| —— Perturbation method

Traveling wave method

Fig. 3 Time-varying vibration periods of the fundamental
mode when the string length changes at  v=0.1c//, 0.5

0.0

w(x,t)

The first periodT 4 of the fundamental mode is defined as the 5
time for the string to recover its original phase. It is actually equi
to the time for a traveling wave to pass through the string dowi
stream and upstream. The oscillation period is calculated as f
lows: For the increasing length problem, the distance for a lel .
going wave starting at=1, to reachx=1,+vT,4, after reflection %00 05 1.0 15
atx=0, givescT;=2l3+vTq;1. Solving this expression for the
first period of the fundamental mode yields

-1.0 — — perturbation method M
traveling wave method

x/l,

Fig. 4 String motion history during a period when v=0.2c/l,
AR for the initial displacement of the fundamental mode; (a) in-

11:;- (®)  creasing length, (b) decreasing length

The corresponding natural frequencyas;= m(c—v)/lo. When
v=0, Eq.(5) becomes the fundamental period of the fixed length

string. ) ) 2.4 Free Response by the Superposition of Traveling

The vibration period and natural frequency are also given Ryjayes. Time-invariant natural modes do not exist for this time-
the phase-closure principlfl3,14). As a wave propagates down-yarying string. However, we can represent free response by de-
stream and upstream, the total phase changes bekgevT)  composing initial standing waves into the corresponding traveling
andklo, respectively. The phase difference, induced during reflegryes, and by superposing the traveling waves at a certain time.
tion frorn_ both _vertlcally f|x_ed boundaries, 'vs_l_f the total_ phase Figures 4a) and (b) show the motion history of the fundamental
change is an integer multiple ofs2 the condition describes the pode over a period by superposing traveling waves for both cases
natural frequency of the system. The total phase change over §j8ne increasing and decreasing lengths, respectively. The results
first cycle of thenth vibration mode, satisfying the principle are plotted with the perturbation solution by Yamamoto ef@il.

It is noted that the traveling wave method gives the exact solution

lotvTh o _ for free vibration, compared to the approximate solution.
@n1| T o) Tt =2mn, ®) In the figure, all the points of the string start to vibrate with the
same phase at=0. As time goes, the vibration at the point down-
gives the first natural frequency of timeh vibration mode, stream lags behind that at the point downstream urtily; .

While the string displacements for the constant length problem are

m(cn—v) zero att=0.25T,; and 0.79;4, the nonconstant phase make the

Wn1= I , (7) time-varying string having a different displacement pattern at

0 those times. All the string points recover their original phases after

wheren=1,2,3;--. The natural frequency of the fundamental vi-the fundamental period.

bration mode aftem cycles is also given by

_m(c—v) m(c—v)™
Wim= Im—l - |O(C+U)mfl (8) (a)

wherel,=lp 1+vTyy is the string length at=3m-1T,, . Ve \E v, e ﬁ e

When the length of the string decreases, the corresponding pe-
riod and natural frequency are obtained by replacingth —v in
Egs. (5)—(8). Figure 3 shows time-dependent periods,,
=2mlw;y, of the fundamental mode for both increasing and desig. 5 Power flow by string tension at the moving boundary;
creasing lengths whem=0.1c/l,. (a) increasing length, (b) decreasing length
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3 Free Vibration Energy 100 - ; ; .

. .. 90 | ® Traveling wave method | |
3.1 Energy Reflection Coefficient. Lee and Mote[7] de- —— Perturbation method

fined the energy reflection coefficient to quantify energy trans- — Kotera method 1
ferred when a wave is reflected at various boundary supports. Thg 4|

a\a 4

energy reflection coefficierR is defined as the ratio between the 3
incident wave energy and reflected one, o 60r 1
E 7 G sof 1

r r@r s
= — = ——y°. 9 S 40+ 1

Ei Ziwi Y ( ) ot

£

5

30 F q
HereZ=P/c is the mechanical impedance of the string, and the
subscriptd andr denote incident and reflected waves: A, /A; is

the amplitude ratio of the incident and reflected waves, that is 10} 1
usually called as theeflection coefficientFor the fixed length 0 , . , , .
string, the energy reflection coefficiel®=r2, is determined by 0 5 10 18 20 25 30
only the reflection coefficient, becauge=Z7, andw;= w, . How- Time (sec)

ever, when the string length changes with time %€ ,) or the

string translates axially between the two fixed boundari&s (Fig. 6 Free vibration energy when the length increases at
+Z7,), the reflected energy is different from the incident ofe ( v=0.1c/lo

#1), even though the amplitude of the reflected wave is equal to
the incident oner(=1).

20 + b

2000 T T T T T T T T

3.2 Energy Variation. When a traveling wave reflects from 449
the fixed boundaryX=0), the amplitude and impedance of the
reflected wave are equal to the incident ones. However, when 1 169
wave reflects from the moving boundaryxat1(t), the reflected 1400
frequencyw, differs from the incident one; . By the use of Eq.
(5), the frequency ratio

F e Traveling wave method B
Perturbation method
F Kotera method -

1200
1000
; lo c—v
Z;_Wo+vTﬂf_EI;

(10) 800

Vibration Energy (%)

600

is expressed in terms of by the wave speed and the moving vel
ity. Finally, the energy reflection coefficient is given by 200

E, o C—v 1 Ti
E. o ctou’ (11) ime (sec)

Fig. 7 Free vibration energy when the length decreases at
When the string length increases, the energy coefficient becomr@0.1¢//y
less than 1, and free vibration energy decreases. The wave energy
E, aftern periods becomes

3.4 Comparisons. The analytical solutio12) for the free
E,=ER" (12)  vibration energy of the time-varying string is compared with two

earlier results solved by the approximated methods; a perturbation
whereE, is the initial energy of the string. For the case of demethod ([9]) and Kotera's method[10]). Figure 6 shows free
creasing length, the energy coefficient beconfes(c+v)/(c  Vibration energy when the length increasesvat0.1c/ly. The
—v)>1. The free vibration energf, increases exponentially Vibration energy by the traveling wave method at each cycle cal-
with time. The source of the energy increase is the external enefgyfated from Eq(12), and it is marked as . Vibration energies
required for delivering the boundary supportvatWhen a wave by the two approximated methods are calculated by implementing
reflects from the moving boundary, a part of the external energytfie numerical integration of free responses derived in the papers.

transferred from the boundary into the vibration energy. It is seen that the vibration energy decreases with at a Rate
=0.9/1.1=81.8 percent over each period. The traveling wave so-

3.3 Energy Transfer Mechanism. The transverse displace- |ytion, calculated from the simple E¢12), gives the exact solu-
ment of the vertically fixed but moving boundary is always zergjon of the free vibration energy. The approximated solution by the
However, when the string length increases athe instantaneous perturbation method is in a good agreement with the exact one.
velocity is —vwy(l,t), as shown in Fig. &). This nonzero veloc- However, Kotera’s solution shows a sinusoidal disturbance around
ity causes power flow together with the vertical component @he exponentially decreasing value.
string tension,Pw(l,t). The magnitude of the power flow is  Figure 7 shows the vibration energy when the length decreases
given by at v=0.1c/ly. As the string length gets closer to zerd (

—10sec), the corresponding energy shows a dramatic increase,

Pi= _vai(l’t)<0' (13) " and it becomes infinite at the zero length. This explains qualita-
tively the unstable motion of various continuous systems with the
This value is always negative, and the energy is transferred fratacreasing length.
the string to the moving boundary. For the decreasing length prob-When the moving velocity is increased ¢e=0.2c/l, free vi-
lem, the energy transfer mechanism is contrary and the associateation energies for increasing and decreasing cases are plotted in
power flow is always positivéFig. 5b)). In this case, the energy Figs. 8a)and (b). The rate of change of free vibration energy is
is transferred into the string. larger than the case of=0.1c/l,. For the decreasing case, a half
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Fig. 8 Free vibration energy when v=0.2c/ly; (a) increasing length, (b)
decreasing length
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On the Accuracy of Benchmark Tables Resuits

and Graphical Results in the We simply recompute some results of_Erdogan, G_upta, and Rat-
. . . 1 wani[1] and Cheeseman and Santg2gusing an algorithm based
Applled Mechanics Literature on a pair of integral equations for the crack and inclusion problem

developed by Helsing and Peté8. The integral equations, num-

. ber (48) and numbei(49) in Helsing and Peterk3], are of Fred-

J. Helsing holm’s second kind with compact operators. This allows for stable

Department of Solid Mechanics and NADA, Royal convergence. The integral equations are solved using a Mystro

Institute of Technology, SE-100 44 Stockholm, Sweden i%heme vaith colr_npositéa quad:jature on a l‘f”iforé“ mesh. Wel use
o ; -point Gauss-Legendre quadrature on all quadrature panels ex-

e-mail: helsing@nada.kth.se cept for the two panels containing the crack tips. There we use

Gauss-Jacobi quadrature. Great care is devoted to avoiding round-

A. Jonsson off error throughout the code. The setups under investigation are
Department of Solid Mechanics, Royal Institute of depicted in Fig. 1. The shear moduli of the matrix and of the
Technology, SE-100 44 Stockholm, Sweden cylinder areu;=1 and u,=23. The Poisson’s ratios of matrix

and of the cylinder arev,;=0.35 and »,=0.30. The two-
dimensional bulk modulug, used in Helsing and Peters, ks u/
. ) ) ) (1—-2v). This bulk modulus should not be mixed up with the
Converged normalized stress intensity factors for a matrix cragkapna” yused by many authors including Erdogan, Gupta, and

interacting with an elastic cylinder are presented. The new resulggyani, The latter “kappa” corresponds to the quantity:3
differ from previously published results in several examples. The4V' in Muskhelishvili's notation.

need for better error analysis in computational fracture mechan- oy new converged results do not always agree with the previ-

ics is emphasized[DOI: 10.1115/1.1427691 ously published results. This can be seen in Table 1 and in Fig. 2.
In many cases the results differ considerably, in digits and also in
signs (for the secondary factors,; andk,,). It is hazardous to
speculate in the reasons for this discrepancy. One thing is certain,
however. Our results have converged stably. See Fig. 3 for an

Introduction example where the relative error for a stress intensity factor settles

15 i )
The purpose of this note is to initiate a discussion of the accfl! @ level of 10™ as the mesh is refined.

racy of benchmark tables and graphical results presented in the

applied mechanics literature. Accurate benchmark results are es-

sential in the development of new software. Programming errors

easily occur. If one cannot find at least three-digit accurate resul¥scussion

for standard nontrivial setups to verify against, many errors will This note stresses the need for more error analysis in computa-

go unnoticed. tional fracture mechanics. An algorithm may be correct in a math-
Stress intensity factors are frequently tabulated and presentee@imnatical sense. The results it produces on a computer may still be

graphs. These factors are considered difficult to compute, evarong if the problem is not properly resolved, if the algorithm is

though the underlying physical problem often is well conditionedinstable, or if there is a bug in the code or in the compiler.

The chief difficulties are to find and to implement efficient nu- It is difficult to prove, rigorously, that a numerical solution to a

merical algorithms and to assess the accuracy of the final resfifntrivial problem is accurate to a certain number of digits. Ac-

There are many pitfalls. Finding the correct branch of the squa?grate benchmarks can, in our opinion, best be establlshed by Fhe

root of complex numbers in the context of computing weig greement of se\{eral calculations performed by |nerendent in-

. L : estigators. To this end, the presentation of numerical results in
functions is just one example of a nonstandard task which Mgy g of numbers is essential. Graphs alone are not sufficient. The

occur and where even the properties of the compiler must be ta‘?’@sentation of convergence studies, further, helps remove doubts
into account. Also, the orientation of coordinate systems and thBout underresolution and instability. We encourage the inclusion
various normalization factors and symbols used by different aof this type of information in forthcoming papers. We challenge
thors may cause confusion. Not surprisingly, many of the numenther scientists in computational mechanics to confirm or disprove
cal results presented in the literature are of questionable qual®r new numerical results.
Convergence studies are seldom, if ever, presented. We believe
that there is a particular need to reexamine previously published
results in this area.

In order to illustrate the points made above we consider g3pje 1 Comparison between our new results and those of
example involving two papers presenting results for normalize@ble 3 in Erdogan, Gupta, and Ratwani  [1] for the geometry of
stress intensity factors of a matrix crack in the presence of &re left image in our Fig. 1. The relations between the shear
elastic cylinder: one classic paper by Erdogan, Gupta, and Rﬁ@ﬁ“'idOf thde inclusion and the ?‘a"ix is lk‘2_=23:“_1_- 'I(;he ”Og
wani [l], and a recent paper by Cheeseman and Sa[ﬁ]irhn the gwsa;(ze mode |/ stress |ntenS|ty actor at crac -tlp J1s enote
latter paper the authors validate their algorithm by comparing with_—~_
results from the former paper. “Good agreement” is noted, but theéa  kFSR  kew  KESR - ynew | BGR ynew BSR jnew
statement is not supported by numerical results.

0.3 0.784 0.790 0.225 0.235-0.004 -0.023 0.072 0.073

0.5 0.792 0.797 0.341 0.347-0.006 —0.037 0.101 0.102

1.0 0.817 0.817 0.613 0.613-0.005 —0.067 0.057 0.061
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Foundation under TFR contracts 98-568 and 99-380. .0 0.860 0.850 0.845 0.830 0.034-0.058 —0.021 0.018
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material 1

material 1

0

0

Fig. 1 Left, a straight crack outside an inclusion under uniaxial tension. This is the setup of Erdogan, Gupta, and Ratwani
[1] corresponding to their Table 3. Right, an arc-shaped crack outside a circular inclusion under biaxial tension. This is the

setup of Cheeseman and Santare [2] corresponding to their Fig. 8.

1.1

1.05

[y

x Cheeseman and Santare, =30  |.............. ]
- - New result, =30
4 Cheeseman and Santare, 0=45

o
©

k,./k, . (no inclusion)
1Yy

©0

(4]

0.85 —— New result, 6=45
§ : ® Cheeseman and Santare, 6=75
0'8 L ...... . New result, e=75 ................
0'751 2 3 4 5 6

R /R
¢

Fig. 2 Normalized mode | stress intensity factors of the setup in Fig. 8 in
Cheeseman and Santare [2] (the right image of our Fig. 1 ) versus dimensionless
distance for a circular arc-shaped crack interacting with an inclusion
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Convergence under increased uniform resolution
10 T -

Relative error in k ;

Number of discretization points

Fig. 3 Convergence of the stress intensity factor k,, of Erdogan, Gupta, and
Ratwani [1] for c=2a in the left image of our Fig. 1. The mesh is uniformly re-
fined. The number of distgretization points is N. Double precision arithmetic is
used. The reference value k;,=0.8497339474770513 is computed with 592, or
more, discretization points in quadruple precision arithmetic. Relative errors
smaller than machine epsilon as displayed as 1.11  -1071¢

[2] Cheeseman, B. A., and Santare, M. H., 2000, “The Interaction of a Curved
References Crack With a Circular Elastic Inclusion,” Int. J. Fracl03 pp. 259-277.
[1] Erdogan, F., Gupta, G. D., and Ratwani, M., 1974, “Interaction Between a [3] Helsing, J., and Peters, G., 1999, “Integral Equation Methods and Numerical
Circular Inclusion and an Arbitrarily Oriented Crack,” ASME J. Appl. Mech., Solutions of Crack and Inclusion Problems in Planar Elastostatics,” SIAM
41, pp. 1007-1013. (Soc. Ind. Appl. Math. J. Appl. Math.,59, pp. 965-982.
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Error Analysis With Applications in Engineering, by W. racy of robot manipulatojs Indeed, many people do need such
Szczepinski and Z. Kotulski. Lastran Corp., Rochester, Nhysical motivation to go through the basics of probability—and
2000. this may define the potentially wide market for the book.
The book contains seven chapters plus an appendix. The chap-
REVIEWED BY M. OSTOJA —STARZEWSK] ! ters are 1 Basic characteristics of error distribution; histograms; 2
o . . ) Sample points, random variables, and probability; 3 Functions of
This is a well-laid-out and well-written introductory book fori,qenendent random variables; 4 Two-dimensional distributions: 5
engineergespecially mechanlcal englne)ansterested in analysis Two-dimensional functions; 6 Three-dimensional distributions; 7
of random effects in mechanics. The key word heré igyee dimensional functions of independent random variables:
introductory—as it would be suitable for an undergradust d the Appendix—Some useful definitions and facts of probabil-

bly random processes and fields. As such, the book therefore OF ertinent mathematical foundations has also been included
fers an introduction to statistical error analysis methodology f&nB%th authors are well-established mechanicians—the first dne
anyone in solid/structural and/or rigid-body mechanics. With thE . . : L
book, a mechanicalbut also civil, aerospace, materialsengi- eing known fOI"hIS work |n_plast|C|ty theory,_e_lnd the second_one
neer can learn concepts of applied probability theory—especiaf his St”d'es. in stochastic mechar_u_(:g)emflcally,_ StOChaSt.'C
calculus of random variables—through very clear expositions, n ‘ave propagation Perhaps the only criticism that ”.".ght be ralseq
merous mechanics problems and exampeg., positioning accu- 1S that th_ere_are other books on _applled probaility methods_ In
engineering in the English speaking world. But the presentation
— and scope of Error...” are not in overlap with any one of these,
lDepartment of Mechanical Engineering, McGill University, 817 Sherbrook@lnd some aspects are tru'V or|g|nal. The book is therefore recom-
Street West, Montreal, Quebec H3A 2K6, Canada. mended.
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