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A Theory of Fatigue: A Physical
Approach With Application to
Lead-Rich Solder
A fatigue theory with its failure criterion based on physical damage mechanisms is
sented for solders. The theory applies Mura’s micromechanical fatigue model to
vidual grains of the solder structure. By introducing grain orientation (Schmid factor
into the fatigue formula, an m-N curve at constant loading, similar to a fatigue S-N cu
is suggested for fatigue failure of grains with different orientations. A solder structur
defined as fatigued when the ratio of its failed grains reaches a critical threshold, sin
this threshold the failed grains may form a cluster, according to percolation the
Experimental data for 96.5Pb-3.5Sn (wt. %) solder bulk specimens showed good a
ment with the theory and its associated failure criterion. The theory is anisotropic,
there is no size limitation to its application, which could be suitable for anisotro
small-scale (micron scale or smaller) solder joints.@DOI: 10.1115/1.1412453#
o

i
a

a
t

p
o
v
e
n

ting
the

g
For

ena
stic
Pb-
B
the
orm
ain
rain
thin
form
ruc-
in-
erio-
ntil
gue
until
was
-

ent
ated
ery

roc-
men
the
t of

her
-

eory
s-
tion
ins

cture
lls

tire
ay

n
n
w
M

1 Introduction

Solder connections in electronic packaging are expected to
come smaller and smaller. Today, the characteristic size of a so
joint in flip chip packaging is about a few hundred microns. A
cording to the Semiconductor Industry Association’s~SIA! road-
map ~@1#!, this size will decrease further into a few microns
even nanometer scale in future. It is well know that fatigue
such small joints is different from that of the bulk specime
Therefore, the empirical fatigue formula derived from experime
tal data of bulk specimens, which are statistically isotropic, m
not realistically predict life for such small joints. However, it
very difficult, if not impossible, to conduct fatigue tests on
individual small solder joint to derive an empirical fatigue fo
mula. On the other hand, even if such tests are performed an
empirical fatigue formula derived as a result, the application
the formula to joints of different sizes is still questionable. A f
tigue theory without size limitation is therefore needed, so tha
fatigue parameters can be determined from tests of bulk sp
mens with the size effect built into the formula. To our know
edge, there has been no fatigue theory and its corresponding
pirical formula that incorporates a size effect~e.g., see review
article of the current fatigue theories for solders, Lee, et al.@2#!.
The theory presented here begins with fatigue behavior of an
dividual grain, which is caused by microcracking within its pe
sistent slip bands~PSB!. The PSB are formed by motion of sli
planes, and these motions can occur only in particular directi
where such motion is related to the magnitude of local resol
shear stress on the slip planes. Therefore, resolved shear str
the key parameter to characterize the fatigue behavior of an i
vidual grain, and the fatigue of an individual grain is anisotrop
at the micro scale. At the same time, the theory treats a b
specimen as an agglomeration of such individually anisotro
grains. Statistically, such an agglomeration is isotropic, and
micro-scale anisotropy disappears. Therefore, the theory has

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March
2001; final revision, June 8, 2001. Associate Editor: M.-J. Pindera. Discussion o
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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potential to connect the fatigue data from bulk specimen tes
with the fatigue phenomena of meso-scale solder joints and
micro-scale fatigue of individual grains.

Solders in electronic packaging typically have low meltin
points, and room temperature can be a ‘‘high’’ temperature.
example, 25°C givesT/Tm50.65 for 63Sn-37Pb~wt. %! solder,
whereTm is the absolute melting temperature. Fatigue phenom
of solders are thus very complicated. For example, the pla
strain based Coffin-Manson relationship does not hold for 96.5
3.5Sn ~wt. %! solder ~@3#!. Experimental results show that PS
form in the material when the device is under cyclic loading at
operating temperature range, and thereafter, microcracks f
within PSB due to increment of dislocation density or along gr
boundaries because of the impingement of the PSB on the g
boundaries. These microcracks are usually confined to be wi
the grains or along grain boundaries, and do not coalesce and
one dominant macrocrack that leads to fracture of the solder st
ture. Instead, the number of grains with such microcracks
creases in a percolating manner, and the solder structure det
rates, not necessarily showing a drop in load carrying ability u
some critical point is reached. Figure 1 illustrates such a fati
process. The solder specimen shows a load range increment
a certain point is reached. The specimen used in this test
made from 96.5Pb-3.5Sn~wt. %! solder and subjected to strain
controlled cyclic loading. After about 6800 cycles, the experim
was stopped and the surface of the specimen was investig
under an optical microscope. Figure 2 shows that the once v
smooth surface at the onset of testing becomes full of mac
racks, microcracks, extrusions, and intrusions. Also the speci
can be seen to begin to lose its load-carrying ability during
final stage, in an accelerated way, although a certain amoun
load could still be carried.

Given the experimental findings contained here and in ot
authors’ publications~@4–8#!, a fatigue theory based on disloca
tion and percolation damage mechanics is developed. The th
assumes the following:~1! Local resolved shear stress in the cry
tal slip plane causes PSB and thus the microcracks’ forma
within the PSB, and the magnitude of the stress differs for gra
or cells of different crystallographic orientation;~2! Microcracks
do not propagate but rather remain where they appear and fra
the grains or cells locally. The number of failed grains or ce
increases within the solder structure;~3! The portion of such
grains or cells reaches a threshold value at which point the en
structure becomes unstable. At this value the failed grains m
form a large cluster or macrocrack.
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Fig. 1 Cyclic peak stresses plot for 96.5Pb-3.5Sn solder
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In the following sections, fatigue of an individual grain is firs
discussed. A fatigue theory with its definition of fatigue criterio
for solders is presented. Finally, the experimental results
96.5Pb-3.5Sn~wt. %! solder bulk specimens are given as a ve
fication of the theory.

2 Dislocations, PSB, and the Critical Number of
Cycles for Microcrack Initiation

When ductile materials are subjected to cyclic loading, dislo
tions appear first and are followed by PSB formation within th
grains. If the grains’ facets are a free surface, so-called extrus
and intrusions will appear in the form of striation as the PS
strike the free surface. Foryth@9# first reported this phenomeno
for an aluminum-copper alloy. Later, many researchers worked
a variety of other metals and have found that the phenome
exists for most of the FCC, BCC, and some of the HCP met
Experimental results from Vaynman@7# and Lawson@8# showed
striation on the surface of fatigued 96.5Pb-3.5Sn solder specim
~Fig. 3!. The striation was also found to appear on the fatigu
tin-silver and tin-zinc eutectic solder specimens~@10#!.

Fig. 2 Microcracks appeared on the surface of a 96.5Pb-3.5Sn
solder specimen after about 6800 cycles under strain-
controlled fatigue test „25°C, D«Ä0.006…
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Lin and Ito suggested a ratcheting or gating mechanism for
formation of PSB~@11#!. Using the same idea, Mura and cowor
ers~@12–14#! have further developed a micromechanical mode
quantitatively analyze the microcracking process within the P
using dislocation theory. In the Mura model, PSB formation
sults from dislocation density increment in two adjacent but
versely gliding slip layers during the cyclic loading. At the sam
time, change of the Gibb’s free energy increases as the disloca
energy increases because of the dislocation increment. At a ce
point, the Gibb’s free energy change reaches a maximum
microcracking occurs within the PSB. This cycle number is d
fined as the fatigue point. The Mura model is able to produce
fatigue S-N curve, to capture the grain size effect and to incor
rate material properties such as surface energy density, cri
friction stresses, and others. Briefly, similar to the Griffith theo
for crack initiation in linear elastic fracture mechanics~LEFM!,
the Mura model proposes fatigue microcrack initiation based
the Gibb’s free energy change:

DG52W12W212cg (1a)

]

]n
~DG!50 (1b)

where W1 is the mechanical energy released;W2 is the energy
release from the loss of lattice defects—dislocations—at
nucleation site;g is the free surface energy;c is the length of the
initiated two-dimensional crack; andn is the cycle number. In
~@15#!, Fine expanded the above theory to a three-dimensio
penny-shaped mode I crack in the study of fatigue at eleva
temperature by rewriting Eq.~1a! as

DG52W12W212gA (1c)

where A is the surface area of the initiated three-dimensio
crack. For solders, local unidirectional shear stress is the domi
factor to initiate a microcrack within a grain or along grain face
The initiated microcrack is therefore a combined mode II and
type. For simplicity, assume the initiated microcrack is a pen
shaped three-dimensional microcrack. This mechanical energ
leased is given by integrating the energy released along with
crack growth as the following:

W15
64~12n2!Dt2a3

3~22n!E
(2)
Transactions of the ASME
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whereE is the Young’s modulus,n is the Poisson’s ratio,Dt is the
shear stress range within the crack plane, anda is the radius of the
formed microcrack. The energy released from the loss of lat
defects keeps Fine’s form~@15#!:

W252gdA, (3)

where gd is defined as dislocation energy per unit area andA
5pa2. Substituting~2! and ~3! into ~1c! gives

Fig. 3 „a… Striations on the surface of a 96.5Pb-3.5Sn solder
specimen after strain-controlled isothermal fatigue test
„adopted from S. Vaynman’s Ph.D. dissertation †7‡, Fig. 45 …; „b…
microcracked grain after strain controlled thermomechanical
fatigue test „adopted from L. Lawson’s Ph.D. dissertation †8‡,
Fig. 17 …
Journal of Applied Mechanics
ice

DG52
64~12n2!Dt2a3

3~22n!E
12p~g2gd!a2. (4)

Following Mura et al.@12#, the total number of dislocations
measured along the diameter of the to-be-nucleated penny-sh
crack is

N̄5
2~12n!~Dt22t f !d̄n

mb
(5a)

wheret f is the friction stress,d̄ is a characteristic grain size,b is
Burger’s vector, andm is the shear modulus. The radius of th
nucleated crack is therefore

a5
1

2
N̄b5

2~12n2!

E
~Dt22t f !d̄n. (5b)

Substitution of~5b) into (4) and the results into (1b) gives

ncr5
~22n!p~g2gd!E2

32~12n2!2d̄~Dt22t f !Dt2
. (6)

Equation~6! gives the number of cycles at which a microcra
initiates within the PSB or on the grain facets. The dislocat
energy densitygd , grain sized̄, and local resolved shear stressDt
within the cracking plane are seen to strongly influencencr .

For solders, the critical friction stress is small compared to
operation stress loading. It is assumed henceforth thatDt@2t f
andt f can be neglected, i.e.,Dt22t f'Dt. Under this assump-
tion, Eq. ~6! becomes

ncrDt3'
~22n!p~g2gd!E2

32~12n2!2d̄
. (7a)

Introducing shear strengthty into Eq. ~7a!, we may rewrite

ncrS Dt

ty
D 3

5
~22n!p

32~12n2!2

~g2gd!E2

d̄ty
3

. (7b)

The right-hand side of Eq.~7b! is a constant, and Eq.~7b!
results from the assumption of a penny-shape crack loade
unidirectional shear. Within a real solder structure, the geom
of microcracks varies and microcrack modes and energy rele
rate may not be as simple. To make Eq.~7b! more general, assum

ncrS Dt

ty
D h

5C. (7c)

Here, h and C are material constants. Equation~7c! gives the
critical number of cycles for a grain to develop microcracks in
PSB or along its boundaries.

3 Local Resolved Shear Stress, Crystallographic Ori-
entation, and Fatigue of an Individual Grain

Solders are materials with high homologous temperatures.
der connections thus operate at a relatively high tempera
range, which causes glide of the slip systems within its grains
become easier since the flow stress is low. Dislocations oc
easier with the assistance of thermal activation, but at the s
time so does the annihilation of dislocations and recovery. Th
factors help to confine the PSB to be within the grains. Lin et
@16#, studied the possibility of a fatigue band crossing a gr
boundary and concluded that fatigue band is less likely to cr
the grain boundary if the orientation of the neighboring grain d
fers by more than 5 deg. The bands were actually stopped f
crossing the grain boundary when the misorientation is gre
than 10 deg, an angle not uncommon between the grains with
real structure. It is also believed that at high homologous temp
ture, grain boundaries are obstacles to PSB, and as a result,
are confined to be within the grain. If microcracking occurs with
JANUARY 2002, Vol. 69 Õ 3
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the PSB, the newly created microcracks will also be confined
within the grain. If on the other hand a microcrack does not fo
within the PSB, the strain energy there is not released. Under
condition, the PSB impinge and produce microcracking alo
grain boundaries. If the grain boundaries are a free surface,
extrusion-intrusion will occur. Figure 4 shows the original
smooth surface of a high lead solder at the end of a stra
controlled fatigue test. The experiment was carried out at ro
temperature (T/Tm'0.5). The surface shows an agglomeration
extrusions, intrusions, striations of PSB and microcracks. The
glomerates pattern also can be seen to orient at roughly 45 de
the loading axis~vertical!, which is the maximum shear stres
direction. There are many more experimental findings~@7,8,10#!,
all of which suggest that microcracking within solders is a loc
ized phenomenon, and occurs within a grain and/or along g
boundaries. According to Eq.~7c!, the shear stress range has
strong influence on the number of cycles required to initiate
microcrack within the PSB. The local resolved shear stress ra
on the grain’s active slip systems will then be investigated
quantify the microcracking within the PSB of an individual grai

When a grain is subjected to a far field stress, the resolved s
stresses on its slip systems vary. For example, an FCC crysta
12 active slip systems~@17#!. Under certain loading conditions
the resolved shear stresses on these slip systems could differ
stantially ~see Table 1 in Lin@18# and Example~2.3.1! in Suresh
@19#!. A slip system consists of a glide plane and a slip directio
Two vectors can thus characterize the system:ng , the normal to
the glide plane, andns , the slip direction. Assume that the syste
undergoes loadings, the resolved shear stresst on the system is

t5ns•s•ng . (8)

It is well known that hydrostatic stress does not contribute to
resolved shear stress. Equation~8! can be rewritten as follows:

t5ns•S S1
1

3
skkI D •ng5ns•S•ng5miSi (9)

whereS is the deviatoric stress:S5s2
1
3 tr(s)I ; m is the Schmid

factor; and ioi is a form of norm. When a crystal undergoe
uniaxial loading, the Schmid factorm of a slip system varies
between 0.0 and 0.5.~If the direction ofsa , ta , ands22 lie in the
same plane, thenta50.5 sin 2as225ms22, Fig. 5!. Dingli @20#
used a second-order Schmid tensor,m, to get the resolved shea
stress:

t5m:s. (10)

Fig. 4 The originally smooth surface of 96.5Pb-3.5Sn solder
specimen now shows an agglomeration of extrusions, intru-
sions, striations of PSB and microcracks, with the pattern ori-
enting at roughly 45 deg to the loading axis „vertical …
4 Õ Vol. 69, JANUARY 2002
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The resolved shear stress rangeDt under cyclic loading condi-
tion is given by the following:

Dt5miS22S1i . (11a)

Here subscripts ‘‘1’’ and ‘‘2’’ refer to the two extremes of th
stress loading space. It is assumed thatm does not change during
cyclic loading. Under one-dimensional cyclic loading, the r
solved shear stress range can be written as follows:

Dt5mis22s1i . (11b)

Subscripts ‘‘1’’ and ‘‘2’’ correspond to the valley and pea
points of cyclic loading, respectively. If the load ratio
R5s1/s2P@21,1#, then

Dt5m~12R!us2u. (12)

Substituting Eq.~11b! into Eq. ~7c!,

ncrm
hS is22s1i

ty
D h

5C. (13a)

In general,

ncrm
hS iS22S1i

ty
D h

5C. (13b)

Further, under the same loading condition, i.e.,is22s1i re-
mains constant:

ncrm
h5CS is22s1i

ty
D 2h

5C1 . (14)

Fig. 5 Schmid factor m for a slip system within a crystal that
undergoes uniaxial loading

Fig. 6 The Schmid factor and the critical number of cycles to
initiate a microcrack: m-N curve
Transactions of the ASME
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Equation~14! indicates that the Schmid factor m has a decis
effect on the critical cycle numberncr for microcrack initiation
within the PSB when the loading remains constant. If plotted,
equation gives anm-N curve under constant loading~Fig. 6!. The
curve can be interpreted as similar to a S-N curve, except tha
Schmid factorm replaces the stress. According to Fig. 6, unde
given load condition, if a single crystal orients itself in such a w
that its ng and ns for the major active slip systems make the
Schmid factorsm a minimum, the crystal will have the longes
fatigue life. As an example, Fig. 7 shows the Schmid factor c
tour for a FCC crystal under uniaxial tension based on$111%^110&
slip system~reproduced with modification from Fig. 2@21#!. It can
be seen that the Schmid factor varies from 0.272 to 0.5, depen
on the crystal’s orientation towards the loading axis. Ifh53, the
critical cycle number to initiate a crack within the grain cou
differ by as much as six times by changing its orientation. Y
@22# showed the fatigue striations, microcracks in these striatio
and their dependence on the crystallographic orientations~equiva-
lently, the Schmid factorm! by performing experiments on nicke
base single crystal superalloy specimens. Figure 3 shows
SEM photos of the surfaces of fatigued solder specimens~repro-
duced from Vaynman@7# and Lawson@8#!. Closely packed stria-

Fig. 7 Contours of a constant Schmid factor for uniaxial ten-
sion based on ˆ111‰Š110‹ slip „reproduced with modification
from Fig. 2 „†21‡……
Journal of Applied Mechanics
ve

the

the
a

ay
ir
t
n-

ing

ld
ue
ns,

-
two

tions on the surface are evident. Striations are traces of slip p
motion, and striation directions demonstrate the motion directio
The photos show clearly that striation directions differ for diffe
ent grains. Other authors~@23–26#! also reported cyclic behavior’s
dependence on crystallographic orientation.

A large enough polycrystalline structure consists of numer
crystallites or grains. Individual grains are oriented in differe
directions and thus have a different Schmid factorm, which leads
to microcracking to occur at a different number of cycles acco
ing to Eq.~14!. It is assumed that the newly nucleated microcra
or family of microcracks extends immediately to the extremit
of the grain. The grain is thus defined to be fatigued or failed
this point. This assumption is reasonable for solders since its
plication is usually associated with small size grains and a mic
crack extends to the extremities very quickly.

4 Fatigue Theory for Solders
Currently, there are three types of fatigue theories for sold

strain based, energy density based, and damage based~@2,8#!. The
goal of these theories is to derive empirical fatigue formula fro
the testing of bulk specimens and to use the derived formula
predict fatigue life of small solder joints. However, microm
chanical research shows that the representative size that suc
mulas can apply is larger than even the size of current so
joints ~@27,28#!, and the anisotropic nature of actual solder join
has not been included. Moreover, the fatigue criteria are mor
less arbitrarily defined without a physical damage based, and
will differ from application to application. In the following sub
sections, a physical damage based fatigue criterion is prese
followed by the formulation of the fatigue theory.

4.1 Fatigue Criterion for Solders. A strain-controlled test
is typically used to study fatigue of solders, and the peak str
change, peak stress range change, or the area enclosed by s
strain hysteresis loop change is recorded. The fatigue criterio
thus defined by the value of these changes. Figures 1 and 8 s
the peak stress curves of two solders, and Fig. 9 sketches ge
cases of such curves. In Fig. 9, curve A is a representative sh
for eutectic PbSn solders, while curves B and C are for Pb r
PbSn solders. It can be seen that a specific solder can ex
either cyclic hardening or softening behavior or both under diff
ent loading conditions. If the fatigue criterion is defined as a c
tain value of peak stress drop, it is not applicable to the case
cyclic hardening~Curve B and C! since no drop occurs in thes
Fig. 8 Peak shear stresses change with number of cycles for silver modified PbSn
solder with a strain rate of 0.003 Õsec „data taken from J. Liang et al., Fig. 7 „a…„†38‡……
JANUARY 2002, Vol. 69 Õ 5
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cases. On the other hand, if the fatigue criterion is defined as
onset point of peak stress drop during cyclic hardening, it is d
nitely not applicable to the cyclic softening case~Curve A! since
the onset point is near the beginning of the test. Moreover, in
case of curve C, there are two onset peak stress drop points
an arbitrary pick of one is inevitable. Clearly, a fatigue criteri
that is reasonably applicable to all cases is needed. In this p
the fatigue point is defined as the onset point where a sharp
stress drop begins. Two straight lines tangential to the curve
ments on each side of the onset point are drawn, and the abs
of the crossing point of these two straight lines is defined as
fatigue point. According to this fatigue criterion, pointsNf A ,
Nf B , and Nf C are the fatigue points for curves A, B, and C
respectively~Fig. 9!. This criterion has as its physical basis on t
percolation damage mechanism. As discussed in Section 1, so
develop microcracks during the cyclic process. These microcra
either appear in the PSB within the grains or along gain bou
aries. According to percolation theory, a cluster of microcrack
grains or macrocracks may form and the material becomes
stable when the portion of these microcracked grains or the d
sity of microcracks reaches the percolation threshold. The ons
a sharp peak stress drop is the initiation of such an unstable s
Stolkarts et al.@6# and Guo et al.@29# applied a similar fatigue
criterion to a near eutectic PbSn solder with successful result
must be further pointed out that this criterion is conservative.

4.2 Fatigue Theory for Solders. Solder is a polycrystalline
material and a solder structure is an aggregation of crystallite
grains of different sizes and orientations. A bulk solder specim
consists of numerous crystallites or grains with their orientati
randomly distributed, while small-scale solder joints consist
limited number of grains and the orientations of these grains
hibit a preferred distribution. In Section 3 it was noted that t
orientation difference results in the Schmid factor difference if
major loadings or stresses on these grains fall within a sim
range, leading to a difference of critical number of cycles of
tigue or failure among grains. Grains with largerm fail at a lower
number of cycles, while those with lowerm fail at a higher num-
ber of cycles. Along with the cyclic loading process, more a
more grains become fatigued or failed due to microcracki
Since the failure of grains is a highly localized phenomenon,
fatigue of a structure can be viewed as the result of a serie
such localized and independent failure events.

Let V(m) be the total number of those grains that have Schm
factor m, and f (m) be the grain Schmid distribution functio
~GSDF! or grain orientation distribution function~GODF!. Then
f (m) is defined as follows:

Fig. 9 Peak stresses evolution during fatigue testing and defi-
nition of fatigue point
6 Õ Vol. 69, JANUARY 2002
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f ~m!dm5
dV~m!

V
(15)

whereV is the total number of grains, andmP@m0 ,m1#. Herem0
and m1 are the minimum and the maximum Schmid factors,
spectively. If it is further assumed that each grain has the sa
volume, thendV(m) andV can be the total volume of grains wit
Schmid factorm and the total volume of the structure. For
structure with numerous grains,f (m) is assumed to be continuou
for simplicity in analysis.

According to Eq.~13a! and the percolation theory based fatigu
criterion defined previously, the fatigue theory can be stated
follows:

Nfmf
hS us22s1u

ty
D h

5C (16)

with

E
mf

m1

f ~m!dm5pc . (17)

Here, according to percolation theory,pc is the percolation
threshold. Figure 10 is a sketch that describes the theory, w
the shaded area depicts the fatigue process. The value ofpc de-
pends on the crystal type and on the percolation model chose
describe the failure mode. For solders, if intergranular micr
racking dominates, bond percolation would be more appropri
However, if microcracking occurs predominantly within th
grains, site percolation would be the best model to use. For
ample, high lead solder can be modeled as a FCC structure
site percolation, andpc50.3116~@30#!.

If f (m) is known, Eq.~17! is easy to use by integrating an
solving for mf . Bulk specimens are statistically homogenous a
isotropic, and it is therefore reasonable to assume

f ~m!5
1

m12m0
. (18)

Substituting Eq.~18! into Eq.~17!, integrating and solving formf
gives

mf5pcm01~12pc!m1 . (19)
Further substitution of Eq.~19! into Eq.~16! gives the fatigue life
Nf as

Nf5
C

~pcm01~12pc!m1!h S ty

is22s1i D
h

. (20)

Equations~18!–~20! are not applicable for meso/micro-sca
structures that are inhomogeneous and/or anisotropic, since

Fig. 10 Fatigue process illustration when stresses are as-
sumed uniform throughout the structure
Transactions of the ASME



Fig. 11 „a… Fatigue and inelastic strain under strain-controlled isothermal fatigue test „«minÄ0, rampÄ2.5 s, partial data from S.
Vaynman …; „b… fatigue and stresses under strain-controlled isothermal fatigue test „«minÄ0, rampÄ2.5 s, partial data from S.
Vaynman …; „c… fatigue and inelastic strain under strain-controlled thermomechanical fatigue testing—conducted by L. Lawson
during 1987–1989; „d… fatigue and stresses range under strain-controlled thermomechanical fatigue testing—conducted by L.
Lawson during 1987–1989; „e… fatigue and inelastic strain under isothermal and thermomechanical fatigue testing—conducted by
L. Lawson during 1987–1989 „temperatures are 15–60°C, 25–80°C, 60°C, 80°C, and 100°C; strain ranges from 0.3–3 percent; strain
rate from 1.15 Ã10À5È3.0Ã10À3 sÀ1

…; „f … fatigue and true stresses under isothermal and thermomechanical fatigue testing—
conducted by L. Lawson during 1987–1989 „temperatures are 15–60°C, 25–80°C, 60°C, 80°C, and 100°C; strain ranges from 0.3–3
percent; strain rate from 1.15 Ã10À5È3.0Ã10À3 sÀ1

…
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Fig. 11 Continued
t

pu-
tion
p-
structure consists of only limited number of grains andf (m) is
not continuous. Equation~17! must be used to solve formf in this
case, and the anisotropy must be brought into the fatigue form
It is not too difficult to getf (m) for these applications: Theore
8 Õ Vol. 69, JANUARY 2002
ula.
-

ical study, experimental measurement reconstruction, and com
tational simulation have been used to obtain the grain orienta
distribution function for polycrystalline structures for various a
plications~@31–34#!.
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Table 1 The coefficients of the log „Ds…Èlog Nf plots „ log „Ds…Äa¿b log Nf… and
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Equation~20! also shows that the fatigue life can be optimiz
by controlling the grain orientations of a structure during the m
allurgical process. Indeed, the texture and grain orientations
be controlled for casting and deposited structures~@35#!, espe-
cially in today’s electronic industry where structures such as film
and solder joints are cast or deposited.

5 Application to 96.5Pb-3.5Sn Solder
The isothermal and thermomechanical fatigue data of a l

rich 96.5Pb-3.5Sn solder were used to verify the fatigue the
and its associated fatigue criterion. Bulk specimens were te
under uniaxial tension-tension strain-controlled conditions w
triangular waveform strain. Most of the experiments were c
ducted during the period from 1985 to 1989 by S. Vaynman and
Lawson at Northwestern University. The raw data are in ana
form from paper charts taken from an X-Y recorder. Addition
fatigue tests were performed using digital data acquisition du
this study. The paper charts data and their digital counterp
were found to agree quite well. The specimen preparation, ge
etry, machining, pre-testing treatment, testing procedures,
testing set-ups are reported in publications by S. Vaynman an
Lawson@7,8,36#.

Lead is a FCC crystal, and the grains of 96.5Pb-3.5Sn so
can be approximately treated as FCC crystal. According to Fig
the Schmid factor varies from 0.272 to 0.5, orm050.272 and
m150.5, depending on the grain’s orientation towards the load
axis. The grains can be approximated as having cubic shape a
simple cubic structure under site percolation damage model
be used to describe the fatigue of the 96.5Pb-3.5Sn solder
specimen. In this case,Pc50.3116~@30#!. Substituting these co
efficients into Eq.~19!, mf can be calculated asmf50.429.

As predicted by Eq.~13!, the log(Ds);log(Nf) plots should be
straight lines sincemf50.429 is a constant for all bulk specimen
Figures 11~b!, ~d!, and~f ! are these plots, and they do show th
straight lines can capture the trend reasonably well under var
conditions: Fig. 11~b! for isothermal results at 25 °C, Fig. 11~c!
for thermomechanical results, and Fig. 11~f ! for both isothermal
and thermomechanical results. Figures 11~b! and~d! fit the experi-
mental data quite well. As comparison, Figs. 11~a!, ~c!, and ~e!
give the corresponding log«in;log Nf plots, which would be used
to fit the data if an inelastic strain-based Coffin-Manson type f
mula was employed. It can be seen that straight lines can fit
data as well. However, it is unclear what is the science bas
apply the fitting results to conditions that are different from t
experimental conditions and what the inelastic strain-ba
Coffin-Manson formula would behave in these conditions. F
thermore, Tables 1 gives the fitting results from Figs. 11~a!–~f !. It
is interesting to see that the coefficients from Figs. 11~b!, ~d! and
~f ! are surprisingly close even though they are from fitting
data from different experimental conditions. It is thus believ
that these coefficients may represent a broad range of test c
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tions, which is what the theory anticipates as it is based on ph
cal damage mechanism. However, the coefficients from F
11~a!, ~c!, and~e! are not as close. Especially, the slopes differ
much as 35 percent. Note that a single strain-based Co
Manson type formula does not fit fatigue data well for bo
96.5Pb-3.5Sn and 63Sn-37Pb solders~@7,29#!.

The coefficientsC andh can be solved as

H C510h~a1 log mf !

h52
1

b

. (21)

If a and b are taken as the average values from Table 1
96.5Pb-3.5Sn solder,ty511.7MPa~@37#!, through Eq.~21!, C and
h can be calculated out:C54.123102, andh56.52. These two
coefficients can then be used in Eqs.~16! and ~20! to predict
fatigue life for 96.5Pb-3.5Sn solder structure. Note that for diff
ent size structures, the theory uses a different percolation mod
determinef (m) and mf . Thus, the theory does not have a si
limitation and Eq. ~17! represents the anisotropic nature th
should be included in the fatigue prediction formulas for curre
and future small-scale structures. Metallurgical control during
manufacturing process of solder interconnects may also be us
optimize fatigue life by possibly changing the grain orientation
size distribution.

6 Conclusion
A fatigue theory for solders is presented. By adopting Mur

dislocation energy-assisted microcrack formation theory, crys
lographic orientation is connected to fatigue failure through
solved shear stresses, and anm-N curve under constant loading i
suggested. The theory views the fatigue process as a serie
local failure events, while the fatigue of the structure is viewed
the percolation result of such local failure events forming a la
cluster. The theory includes the anisotropic nature into the fati
formula and thus can handle the anisotropic small-scale struct
as well as the statistically homogeneous large structures. The
tigue data of 96.5Pb-3.5Sn solder bulk specimens under var
uniaxial tension tests were analyzed. Results show that the th
gives good predictions under broad testing conditions. More
portantly, the theory is materials science based so that the pa
eters of the fatigue formula can be worked out by testing of b
specimens while the formula can be applicable to small structu
The theory suggests metallurgical control during the manufac
ing process to optimize the fatigue life of small-scale structure
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Scaling of Sea Ice Fracture—Part
I: Vertical Penetration
Based on the premise that large-scale failure of sea ice is governed by fracture mech
recently validated by Dempsey’s in situ tests of fracture specimens of a record-bre
size, this two-part study applies fracture mechanics and asymptotic approach to o
approximate explicit formulas for the size effect in two fundamental problems. In
present Part I, the load capacity of a floating ice plate subjected to vertical loa
determined, and in Part II, which follows, the horizontal force exerted by an ice p
moving against a fixed structure is analyzed in a similar manner. The resulting form
for vertical loading agree with previous sophisticated numerical fracture simulations
well with the limited field tests of vertical penetration that exist. The results contrast
the classical predictions of material strength or plasticity theories, which in gen
exhibit no size effect on the nominal strength of the structure.@DOI: 10.1115/1.1429932#
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1 Introduction
Predictions of load capacity and failure of floating sea ice

quire good understanding of the scaling properties and size ef
Because small-scale laboratory tests of sea ice show hardly
notch sensitivity and do not exhibit fracture mechanics behav
many studies from early to recent times have treated sea ice
ure according to either plasticity or elasticity theory with
strength limit~@1–8#!. Both theories exhibit no size effect. Whe
size effects were observed in tests, they were generally attrib
to randomness of material strength~e.g.,@9#!, captured by Weibull
@10# theory stemming from the qualitative idea of Mariotte@11#
and mathematically justified by extreme value statistics~@12#!, see
reviews in, e.g.,@13–15#. However, the statistical explanation o
size effect is, for the present problem, dubious because the m
mum load is not reached at the initiation of fracture but only af
large stable crack growth~in detail, see, e.g.,@14,15#!. In that case
a nonlocal generalization of Weibull theory is required~@16,17#!.
The nonlocal probabilistic analysis shows that the statistical
effect becomes significant only of for very large structures fail
at fracture initiation. Otherwise the energetic~deterministic! size
effect dominates.

Many studies document the brittleness of ice~e.g., @18,19#!.
Various recent experiments~@20–22#! especially the remarkable in
situ tests of Dempsey’s team made with record-size specim
~@23–26#!, indicate that on a scale exceeding about 0.5-m sea
does follow cohesive~quasi-brittle! fracture mechanics, with a
strong size effect, and on scales larger than about 10 m is
well described by linear elastic fracture mechanics~LEFM!. The
need for fracture mechanics approach and the presence of
effect is also suggested by the fact that the experimental lo
deflection diagrams~e.g., @8#! exhibit no yield plateau but a
gradual softening, i.e., a decrease of load with increasing de
tion after the peak load has been reached. Analysis of aco
observations, too, suggests a size effect~@27#!.

The analysis of failure and especially the size effect mu
therefore, be based on fracture mechanics. Many investiga
have been applying to sea ice fracture problems the linear el
fracture mechanics~LEFM! in which the fracture process zone
the crack tip is assumed to be infinitely small. However, as tr

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug.
2000; final revision, July 19, 2001. Associate Editor: A. Needleman. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
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spired from the field fracture tests of size effect by Dempsey et
@23,24#, the length of the fracture process zone of sea ice is of
order of several meters for horizontal propagation, while for v
tical propagation it is roughly 25 cm. Therefore, the cohes
crack model or some of its approximations must be used. T
basic types of cohesive crack model need to be distinguished~a!
thebrittle-ductilemodel, in which the stress-displacement relati
has a long horizontal yield plateau, terminating by a sharp dro
a certain critical opening displacement, and~b! the quasi-brittle
model, in which the cohesive crack-bridging stress gradually
creases according to a fixed law as a function of the open
displacement. The former was developed long ago for metals,
the latter more recently for concrete~@15#!. It is the latter type
which appears more appropriate for sea ice.

In view of the quasi-brittle behavior, the deterministic~ener-
getic! size effects of quasi-brittle fracture~@14,15,28–32#! must
get manifested, and must be expected to be strong, in all
problems in which large cracks grow stably prior to reaching
maximum load~@33,34#!. This includes two fundamental problem
to be addressed in Parts I and II of this study:~1! the vertical load
capacity of floating ice plate~penetration fracture!, and ~2! the
maximum horizontal force exerted on a fixed structure by a m
ing ice plate.

The vertical penetration problem has been analyzed by frac
mechanics at various levels of sophistication in several rec
works. Bažant and Li@35,36# assumed that full-through bendin
cracks propagate radially from the loaded area, but this assu
tion now appears inapplicable except perhaps for very thin pla
in which the horizontal forces due to dome effect nearly vani
Dempsey with co-workers@37#, in an elegant analytical solution
of the problem, assumed that the radial cracks at maximum l
emanating from the loaded area reach through only a part of
ice thickness. To make an analytical solution feasible, they m
various simplifying assumptions, the main one being a unifo
crack depth.

The aforementioned simplifications were avoided in a num
cal simulation of penetration fracture in@38,39#, which confirmed
that indeed the cracks reach only through a part of the thickn
and propagate at the maximum load stage mainly vertically,
though the crack depth is not uniform. This numerical simulat
indicated that for larger ice thicknesses there is a strong size
fect, approaching the size effect of geometrically similar failur
governed by LEFM, for which the nominal strength is propo
tional to (ice thickness)21/2. This conclusion represents a sha
contrast with the classical solutions based on plasticity or elas
ity with a strength limit. Such solutions inevitably imply the ab
sence of any size effect.
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Analysis of another ice fracture problem, namely the large-sc
thermal bending fracture of floating ice~@40,41#!, also indicated a
strong size effect, obeying, however, a different law. In this ca
the critical temperature difference is not proportional
(ice thickness)21/2, as in LEFM, but to (ice thickness)23/8. The
reason is that, at large scale, the cracks must propagate hor
tally as bending cracks, rather than vertically across the thickn
A size effect following still another law was recently demo
strated for the fracture of ice subject to a line load~@42#!.

As typical for all quasi-brittle materials, the size effect is ve
difficult to analyze for the normal sizes of interest, but becom
much simpler asymptotically for very large sizes as well as v
small sizes~@14,15,43#!. The philosophy ofasymptotic matching
~@44#! can then be employed to ‘‘interpolate’’ between the opp
site asymptotic size effects. This furnishes an approximate s
tion for the size effect in the difficult intermediate range. Th
approach, pioneered and widely used in fluid mechanics~e.g.,
@45–47#!, has been successfully employed in many studies of c
crete and a more recently in studies of fiber composites and
~@14,15#!.

Static behavior until failure will be assumed in all of the prese
analysis. Situations in which the ice might acquire significant
netic energy during a temporarily unstable fracture fracture pro
gation will not be considered. The creep of ice will not be expl
itly considered and the elastic modulus of ice will be assumed
represent the effective modulus that approximately incorpor
the effect of creep for the prevalent loading rate.

The purpose of the present two-part study, based on a re
workshop article~@43#!, is to employ the asymptotic matchin
approach to deduce simple approximate formulas for the nom
strength of the ice plate as a function of the size as well as ge
etry. Such an approach helps intuitive understanding, clarifies
failure mechanism, facilitates optimization of engineering desi
elucidates the role of energy release as the main source of
effect, and readily reveals how the material and geometry par
eters control the size effect. Part I will deal with the vertical loa
and Part II which follows with the horizontal load.

2 Problem Formulation
An ice plate floating on water behaves exactly as a plate

Winkler elastic foundation~Fig. 1~a,b!!, with a foundation modu-
lus equal to the specific weight of water,r. Failure under a vertica
load is known to involve formation of radial bending cracks in

Fig. 1 Floating ice plate, its deflection under concentrated
load and crack pattern
12 Õ Vol. 69, JANUARY 2002
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star pattern~shown in a plan view in Fig. 1~c! for the case of six
cracks!. As transpired from a simplified analytical study of Dem
sey et al.@37# and from a detailed numerical simulation~@38,39#!,
these radial cracks do not reach through the full ice thickn
before the maximum load is reached. Rather, they penetrat
maximum load to an average depth of about 0.8h and maximum
depth 0.85h whereh is the ice thickness~Fig. 2a!. The maximum
load is reached when polygonal~circumferential! cracks, needed
to complete a failure mechanism, begin to form~dashed lines in
Fig. 1~c!!.

The nominal strength, which is a parameter of the maxim
vertical loadP, is defined for the vertical penetration problem a

sN5P/h2. (1)

In plasticity or any theory in which the material failure criterion
defined in terms of stresses and strains, the nominal strength~of a
nonrandom material! is size independent for geometrically simila
structures. The size effect in fracture and damage mechanics a
from the fact that the criterion of material failure~crack growth! is
expressed in terms of energy~or stress-displacement relation!.

Sea ice, unlike glacier ice, is not sufficiently confined to beha
plastically ~this is for example confirmed by the absence of yie
plateau from the measured load-deflection diagrams seen, e.
@8#. Sea ice is a brittle material, and so the failure must be a
lyzed by fracture mechanics~e.g.,@20–22,35,36,38–41,48#!. The
analysis must be based on the rate of energy dissipation a
crack front and the rate of energy release from the ice-water
tem. The energy release is associated with unloading, du
which the ice deforms elastically, with a certain Young’s modu
E ~which depends on temperature and other factors!.

The behavior of the ice plate may be described by the p
bending theory. Dimensional analysis, or transformation of
partial differential equation of a plate on Winkler foundation
dimensionless coordinates, shows that the behavior of the pla
fully characterized by the characteristic length

L5~D/r!1/4 (2)

whereD5Eh3/12(12n2)5cylindrical stiffness of the ice plate
n5Poisson ratio of ice.

3 Energy Release and Equilibrium of Fractured Ice
Plate

Superposing the expressions for the stress intensity factorKI of
the part-through radial bending crack of deptha ~Fig. 3b,d! pro-
duced by bending momentM and normal forceN ~per unit
length!, one has

KI5
Apa

h F6M

h
FM~a!1NFN~a!G (3)

where

FM~a!5A 2

pa
tan

pa

2 S cos
pa

2 D 21

3F0.92310.199S 12sin
pa

2 D 4G (4)

FN~a!5A 2

pa
tan

pa

2 S cos
pa

2 D 21

3F0.75212.02a10.37S 12sin
pa

2 D 3G (5)

~@15,49,50#! with an error less than 0.5 percent over the ent
rangeaP(0,1). According to Irwin’s relation, the energy releas
rate is

G5
KI

2

E8
5

N2

E8h
g~a! (6)
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Fig. 2 Analysis of vertical penetration fracture: „a… crack profile and „b – h …
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whereE85E/(12n2) andg is a dimensionless function,

g~a!5paF6e

h
FM~a!1FN~a!G2

~a5a/h!. (7)

e52M /N5eccentricity of the normal force resultant in the cro
section~positive whenN is above the midplane!.

To relateM and N to vertical loadP, let us consider elemen
12341 of the plate~Figs. 1~c! and 2~e,f,g!!, limited by a pair of
opposite radial cracks and the initiating polygonal cracks. T
depth to the polygonal cracks at maximum load is zero, as t
just initiate, and since the cracks must form at the location of
maximum radial bending moment, the vertical shear force on
planes of these cracks is zero. The distanceR of the polygonal
cracks from the vertical loadP may be expected to be propo
tional to the characteristic lengthL since this is the only length
constant in the differential equation governing the problem, and
we may setR5mRL where dimensionlessmR is assumed to be a
constant.

In each narrow radial sector, the resultant of the water pres
due to deflectionw ~Fig. 2~b,c!! is located at a certain distancer w
from loadP. Sincer w can be solved from the differential equatio
for w, and since the solution depends only on one parameter
chanics
ss

he
ey

the
the

-

so

ure

n
the

characteristic lengthL, r w must be proportional toL. Integration
over the area of a semi-circle of radiusr w yields the resultant of
water pressure acting on the whole element 12341. Again,
distance of this resultant, whose magnitude itP/2, from loadP
must be proportional toL, i.e., may be written as

Rw5mmL (8)

wheremw is a constant that can be solved from the different
equation of plate deflections. Of course,mw is a constant only as
long as the behavior is elastic, which is exactly true only if t
crack deptha is constant. Although the crack is growing, we w
assume that its rate of growth is small enough so thatmw would be
approximately constant.

For the sake of simplicity, we assume the normal forceN and
bending momentM on the planes of the radial cracks and t
polygonal cracks to be uniform. The condition of equilibrium
horizontal forces acting on element 12341 in the direction norm
to the radial cracks is then simple; it requires the normal forces
the planes of the polygonal cracks to be equal to the normal fo
N acting in the radial crack planes. The axial vectors of the m
mentsMc acting on the polygonal sides are shown in Fig. 2~e,g!
by double arrows. Summing the projections of these axial vec
JANUARY 2002, Vol. 69 Õ 13
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from all the polygonal sides of the element, one finds that th
moment resultant with axis in the direction 14 is 2RMc , regard-
less of the numbern of radial cracks. So, upon settingR5mRL,
the condition of equilibrium of the radial cracks with the momen
about axis 14~Fig. 2~b,c,e,g!! located at midthickness of the cros
section may be written as

2~mRL !M12~mRL !Mc2
1

2
P~mwL !50. (9)

Furthermore, we must take into account condition~6! of verti-
cal propagation of the radial bending cracks, which may be w
ten asG5Gf whereGf is the fracture energy of ice. Thus, th
critical value of normal force~compressive, with eccentricitye!
may be written as

N52AE8Gf h

g~a!
. (10)

Depending on the energy release rateg(a0) of the actual crack
of length a05a0D ~excluding the cohesive zone!, there are two
kinds of deterministic size effect:~a! the size effect due to energ
release of a large crack, characterized by a large value ofg(a0),
and ~b! the size effect at crack initiation (a050), characterized
by g(a0)50. They are governed by different law
~@14,15,30,32,51#!, and both must be expected to occur in i
penetration.

4 Size Effect on Flexural Strength at Initiation of Po-
lygonal Cracks

Consider first the initiation of the polygonal cracks. Sincea0
50 andg(a0)50, the initiation criterion is that the normal stres
s reaches the tensile strengthf t8 of the ice. However, the crack ca
begin to propagate only after a boundary layer of distributed
crocracking, representing the fracture process zone, forms a
top surface of ice~@14,15,30,51,52#!. The half-depth of this layer
denoted asDb , is a material constant~which should be roughly
equal to the fracture process zone lengthcf introduced later!. Note
that the boundary layerDb has been shown to explain the expe
mentally observed size effect on the modulus of rupture in
bending tests of concrete~@15,52#!.

Although the crack initiation can be handled by the ene
release function, it is simpler to consider the stress redistribu
in the cross section caused by softening in the boundary la
~@52#!. The easiest way to obtain a nominal strength formula t
is correct up to the first two terms of the expansion in terms
powers of 1/h is to write the condition that the elastically calcu
lated normal stressse should be equal to the tensile strength
ice, f t8 , at the middle of the boundary layer of thickness 2Db ,
rather than at ice surface. So the crack initiation criterion
se1N/h5 f t8 where, according to the bending stress formu
se5Mc(h/22Db/2)/(h3/12). This yields the crack initiation cri-
terion:

6Mc

h2 q~h!1
N

h
5 f t8 (11)

whereq(h)512Db /h. This form of the criterion, however, be
comes meaningless whenh,2Db , i.e., when the ice is thinne
than the cracking layer thickness. It can be correct only whenh is
sufficiently larger than 2Db , i.e., asymptotically forh/Db→`.
So it is desirable to modify functionq(h) so as to obtain a for-
mula approximately applicable through the entire size range. T
can be achieved by considering a range ofsN formulas that have
the same first two terms of the large-size asymptotic expansio
1/h as ~11!, and then choosing that which gives the correct va
of the small-size nominal strength. Such a kind of approach
known as asymptotic matching.

Whenh52Db , i.e., when the distributed cracking zone enco
passes essentially the whole depth of plate, the moment at fa
14 Õ Vol. 69, JANUARY 2002
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can be approximately determined as the plastic bending mom
M p . If f c8/ f t8 , with f c85compression strength of ice, is about
then the plastic stress distribution is symmetric bi-rectangular
M p /Me51.5, whereMe5elastically calculated bending momen
for which s5 f c8/ f t8 at ice surface. Iff c8/ f t8 were very large, then
the stress distribution would be a single rectangle balanced b
concentrated compression force at ice surface, and in that
M p /Me would be equal to 3. The real value must lie in betwee
but probably closer to 1.5. We will safely assume thatM p /Me
51.5. So we should seek a formula forq(h) that gives this ratio
for h5Db and has a large-size asymptotic expansion of the fo
12Db(1/h)1(•)(1/h)21 . . . . There are many such formula
but the simplest one is

q~h!5
11Db /h

112Db /h
. (12)

This is verified by the asymptotic expansion:

11Db /h

112Db /h
5S 11

Db

h D S 12
2Db

h
1

4Db
2

h2 2 . . . D
512

Db

h
1

~• !

h2 1
~• !

h3 1 . . . . (13)

5 Size Effect on Nominal Vertical Penetration
Strength

Aside from the stress redistribution at initiation of polygon
cracks~@52#!, there is another deterministic source of size effec
the energy release due to vertical propagation of the radial be
ing cracks~@28#!. The bending moment

M52Ne52Nmeh (14)

may be substituted into~9!; here the normal forceN is defined to
be positive when tensile, although the actual value ofN is nega-
tive ~compression!; and me5e/h5dimensionless paramete
whose value at maximum load may be assumed to be appr
mately constant. This assumption is indicated by the numer
simulations in@38,39#, from which it further transpires thatme
'0.45, as a consequence of the fact that the average crack d
a at maximum load is about 0.8h ~in any case,me,0.5, and so a
possible error inme cannot have a large effect!. The value 0.45
approximately corresponds to the correct number of cracks in
star pattern; if there were more cracks, the depth would
smaller, if fewer, larger.

After substituting~14!, we may expressMc from ~9! and sub-
stitute it into~11!. Then, taking into account~10!, we obtain after
rearrangements the equation:

sN5
2mR

3mw
F S 6me1

1

q~h! D A E8Gf

hg~a!
1

f t8

q~h!
G (15)

whereq(h) is given by~12!.
Now we need to decide how the values ofa at maximum load

should vary with ice thicknessh. To this end, note that ice is a
quasibrittle material. This is evidenced by the fact that at sm
laboratory scale it is notch-insensitive and exhibits no size ef
while at large scale it behaves according to LEFM~@20,24#!.
Therefore, at the tip of the vertically propagating radial cra
there must exist a finite fracture process zone~FPZ! of a certain
characteristic depth 2cf which is a material property. This zon
was modeled in the numerical simulations of Bazˇant and Kim
@38,39# as a yielding zone. The tip of the equivalent LEFM cra
lies approximately in the middle of the FPZ, i.e., at a distancecf
from the actual crack tip~@15#!, whose location is denoted asa0 .

If the locations of the center of the FPZ in structures of diffe
ent sizes were geometrically similar, i.e., ifa at maximum load
were the same for allh, then the size effect would be the same
in LEFM. Experience with testing of quasi-brittle materials~@15#!,
as well as with cohesive crack and nonlocal damage simulati
Transactions of the ASME
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shows the locations of the center of FPZ are usually not geom
cally similar. Rather, similar locations are those of the actual cr
tip. Thus the value ofa05a0 /h may be expected to be approx
mately constant when ice plates of different thicknessesh are
compared. Denotingg8(a0)5dg(a0)/da0 , one may introduce
the approximation

g~a!'g~a0!1g8~a0!~cf /D !. (16)

Substituting this into~15! and rearranging, one gets for the si
effect the formula

sN5
4mR

mw
S me1

1

6q~h! D A E8Gf

hg~a0!1cfg8~a0!
1

mR

3mw

f t8

q~h!
.

(17)

The results of numerical simulations in@39# were found to be
quite well represented by the simple classical size effect law w
large-size residual strengths r proposed in@53# which reads

sN5s0S 11
h

h0
D 21/2

1s r . (18)

Formula~17! is now seen to reduce to this law whenq(h)'1, i.e.,
whenDb is negligible, in which case then

s05
4mRme

mw
A E8Gf

cfg8~a0!
, h05cf

g8~a0!

g~a0!
, s r5

me

3mw
f t8 .

(19)

Furthermore, the numerical simulations in@39# indicated thats r

'0. This means that the contribution of the tensile strengthf t8
governing the initiation of the polygonal cracks must be neg
gible, which in turn implies a negligible role forq(h).

The terms in~17! containingDb anyway decrease with increas
ing h much more rapidly than~18!—they decrease with increasin
h as 1/h, compared to 1/Ah. Consequently, they must becom
negligible for not too largeh regardless of the value ofDb .

Same as~18!, formula ~17! plotted as logsN versus logh ap-
proaches for largeh a downward inclined asymptote of slop
21/2 ~Fig. 3~g!!. This characterizes the large-size asymptote
the size effect law in~17!.

How does the numbern of the radial cracks enter the solution
It does not appear in the present solution for the maximum lo
The reason is that the number of cracks is decided at the be
ning of loading, long before the maximum load is attained.

It is interesting to contrast the size effect obtained here with
deduced for large-scale thermal bending fracture of floating
which was shown to be~@40#!

DT}h23/8 (20)

whereDT is the temperature difference between the bottom
top of the ice plate, which is proportional to the maximum therm
stress before fracture. The large-size asymptotic size effect
fracture under vertical loads would have to follow also the23/8
power law if the cracks at maximum load penetrated through
full thickness of ice and forceN were negligible~@35,40,42,54#!.
But this turned out not to be the case~@37–39,55,56#!.

6 Comments on Plasticity Approach
In contrast to the brute-force numerical simulations conduc

before, the approximate analytical derivation of size effect is
tuitively instructive. It clarifies the reasons why there must be
deterministic size effect in penetration of floating ice. The s
effect could be absent only if the material behaved plastically

If the sea ice were a plastic material, the stress distributions
element 12341 would be as shown in Fig. 2~h!, where f t8 and f c8
denote the tensile and compressive yield strengths. Taking
moment equilibrium condition of this element, one can eas
show that the nominal strength would in that case be expresse
Journal of Applied Mechanics
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sN5
4mR

mw
~ f c8

211 f t8
21!21 (21)

which exhibits no size effect. Plasticity, however, requires that
material strength at all the points of the failure surface be mo
lized at the same time, which is impossible for a quasi-brit
~softening! material such as sea ice.

7 Closing of Part I
The simplified asymptotic analysis of size effect in vertical pe

etration of the ice plate confirms the inevitability of a strong s
effect for larger ice thicknesses, approaching the size effec
LEFM. This conclusion does not disagree with experiments an
supported by previous numerical studies summarized in the
pendix. Part II which follows will apply a similar approach to th
problem of an ice plate moving against a fixed structure. It will
seen that size effects must again be expected, but their natu
rather different.

Appendix

Review of Previous Numerical Fracture Analysis of Size Ef-
fect. To supplement the analytical approach, it may be usefu
review recent detailed numerical simulation of fracture of floati
ice caused by a vertical load~@38,39#!. The fracture pattern~for
the case of six radial cracks! is shown in Fig. 3~a!. The radial
cracks at maximum load penetrate through only a part of
thickness~@26,55#!; Fig. 3~b,c!. The radius of each crack is di
vided by nodes into vertical strips in each of which the vertic
crack growth obeys Rice and Levy’s@57# ‘‘nonlinear line-spring’’
model relating the normal forceN and bending momentM in the
cracked cross section to the relative displacementD and rotationu
~Fig. 3~b!!.

The analysis is based on a simplified version of the cohes
crack model in which the vertical crack growth in each vertic
strip is initiated according to a strength criterion. The cross sec
behavior is considered elastic-plastic until the yield envelope
the ~N, M! plane is crossed by the point~N, M! corresponding to
fracture mechanics. For ease of calculations, a nonassociated
tic flow rule corresponding to the vector (dD,du) based on frac-
ture mechanics is assumed.

The following ice characteristics have been used in calcu
tions: tensile strengthf t850.2 MPa, fracture toughnessKc
50.1 MPaAm, Poisson ration50.29, and Young’ modulusE
51.0 GPa, with the corresponding values: fracture energyGf

5Kc
2/E510 J/m2, and Irwin’s fracture characteristic lengthl 0

5(Kc / f t8)
250.25 m~this value happens to be about the same

for concrete!.
Figure 3~e! displays, with a strongly exaggerated vertical sca

the calculated crack profiles at subsequent loading stages.
3~f ! shows the numerically calculated plot of the radial cra
length a versus the ice thicknessh ~‘‘fracture length’’ means the
radial length of open crack, and ‘‘plastic length’’ the radial leng
up to the tip of plastic zone!. This plot reveals that, except for ver
thin ice, the radial crack lengtha'chh where ch'24 for the
typical ice properties assumed.

The data points in Fig. 3~g! show, in logarithmic scales, the
numerically obtained size effect plot of the normalized nomin
strengthsN5P/h2 versus the relative thickness of the ice~note
that according to plasticity or elasticity with strength criterion, th
plot would be a horizontal line!. The initial horizontal portion, for
which there is no size effect, corresponds to ice thinner than ab
20 cm.

Since the model in@38,39# includes plasticity, it can reproduc
the classical solutions with no size effect, depending on the in
values of ice characteristics. The ice thickness at the onset of
effect depends on the ratio of ice thickness to the fracture cha
teristic length,h/ l 0 . For realistic ice thicknessesh ranging from
0.1 m to 6 m, the computer program would yield perfectly plas
JANUARY 2002, Vol. 69 Õ 15
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Fig. 3 Vertical penetration fracture problem analyzed by Baz ˇant and Kim †38,39‡ main numerical results,
and comparison with field tests of Frankenstein †59,60‡ and Lichtenberger †61‡
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response with no size effect if the fracture characteristic lengtl 0
were at least 1003 larger, i.e., at least 25 m. This would, fo
instance, happen if eitherf t8 were at least 103 smaller ~f t8
<0.01 MPa orKc at least 103 larger (Kc>10 MPaAm). The en-
tire diagram in Fig. 3~g! would then be horizontal.

Larger values ofl 0 are of course possible in view of statistic
scatter, but nothing like 1003 larger. For example, by fitting size
effect data~@23,24#! from in situ tests at Resolute, one getsKc

'2.1 MPaAm, and with f t8'2 MPa one has the fracture chara
teristic lengthl 05(Kc / f t8)

251 m. But this larger value would no
make much difference in the size effect plot in Fig. 3~g!. The
reason that these values were not used in the plot in Fig. 3~g! was
that they correspond to long-distance horizontal propagation
fracture, rather than vertical growth of fracture.

The curve in Fig. 3~g! is the optimum fit of the numerically
calculated data points by the generalized size effect law propo
69, JANUARY 2002
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in Bažant @58#. The final asymptote has slope21/2, which means
that the asymptotic size effect issN}h21/2, the same as for LEFM
with similar cracks, and noth23/8 as proposed by Slepya
@35,40,54#. The 23/8 power scaling would have to be true if th
radial cracks at maximum load were full-through bending crac
The21/2 power scaling may be explained by the fact that dur
failure the bending cracks are not full-through and propag
mainly vertically, which is supported by the calculated crack p
files in Fig. 3~e!.

By fitting of the data points in Fig. 3~g!, spanning over four
orders of magnitude of ice thicknessh, the following prediction
formula in the form of the generalized size effect law~@15,41#!
has been calibrated~see the curve in Fig. 3~g!!:

Pmax5sNh2, sN5B ft8@11~h/l0l 0!r #21/2r (22)
Transactions of the ASME
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with B51.214, l052.55, m51/2, r 51.55, andl 050.25 m ~f t8
50.2 MPa in Fig. 1~g!!.

Only very limited field test data exist. The data points in t
size effect plots in Fig. 1~h! represent the results of the field tes
by @59–61#, and the curves show the optimum fits with the si
effect formula verified by numerical calculations~note that if the
size effect were absent, these plots of nominal strength wo
have to be horizontal!. After optimizing the size effect law param
eters by fitting the data in the three plots in Fig. 3~h!, the data and
the optimum fit are combined in the dimensionless plot in F
3~i!.

Interesting discussions of~@38,39#! were published by Dempse
@62# and Sodhi@63# and rebutted. One objection raised by Sod
was the neglect of creep in Bazˇant and Kim’s analysis. Intuition
suggests that the influence of creep might be like that of plasti
which tends to increase the process zone size, thereby makin
response less brittle and the size effect weaker. But the oppos
true ~@15#!.

The influence of creep on scaling of brittle failures of concre
which is doubtless quite similar from the mechanics viewpo
~albeit different in physical origin!, was studied in depth at North
western University, along with the effect of the crack propagat
velocity; see, e.g.,@15,34,64# and especially@65,66#. The conclu-
sion from these studies, backed by extensive fracture testin
concrete and rock at very different rates, is that creep in the
terial always makes the size effect due to cracks stronger~unless
creep actually prevents crack initiation!. In the logarithmic size
effect plot of nominal strength versus structure size, it cause
shift to the right, toward the LEFM asymptote, which means t
the size effect is intensified by creep. The slower the loading~or
the longer its duration!, the closer to LEFM is the size effect in
cracked structure.

The physical reason, clarified by numerical solutions of str
profiles with a rate-dependent cohesive crack model~@66#!, is that
the highest stresses in the fracture process zone get relaxe
creep, which tends to reduce the effective length of the frac
process zone. The shorter the process zone, the higher is
brittleness of response and the stronger is the size effect.
explains why experiments on notched concrete specimens co
tently show the size effect to be more pronounced at a slo
loading ~@15#!. A similar behavior might be expected for ice.
thus transpires that, in order to take the influence of creep on
size effect approximately into account, it suffices to reduce
value of fracture energy~or fracture toughness! and decrease the
effective length of the fracture process zone.
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@41# Bažant, Z. P., 1992, ‘‘Large-Scale Fracture of Sea Ice Plates,’’Proc. 11th IAHR
Ice Symposium, Vol. 2, T. M. Hrudey, ed., Banff, University of Alberta, June
pp. 991–1005.
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II: Horizontal Load From Moving
Ice
Continuing the analysis of fracture size effect in Part I, which was focused on the m
mum force in vertical penetration of ice, Part II tackles the problem maximum force
can be applied by a moving ice plate on an obstacle presented by a fixed structure.
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1 Introduction
After analyzing in Part I the vertical penetration problem, w

will examine in the present Part II another fundamental probl
of large-scale fracture of sea ice—the maximum forceP that can
be exerted by a moving ice plate of thicknessh on an obstacle
presented by a fixed structure of effective diameterd ~imagined as
a cylinder!. Similar simplifications will be made and the approa
of asymptotic matching will again be followed. All the definitio
and notations from Part I will be retained. Several possi
mechanisms of breakup will be considered.

Stress analysis and fracture of floating ice plates subjected
horizontal load has been studied by Ashton, Atkins, Goldstein
Osipenko, Lavrov, Palmer et al., Ponter and Slepyan, and ot
~@1–7#!. These investigators used dimensional analysis to de
mine the scaling laws of linear elastic fracture mechanics~LEFM!
and of strength theory. They did not consider cohesive frac
and did not attempt to bridge these two theories to describe
size effect transition from one to the other. Characterizing t
transition is the main objective of what follows.

For the horizontal load, it is convenient to define the nomi
strength as the average stress on the cross-section areahd of the
structure facing the moving ice plate, i.e.,

sN5P/hd. (1)

2 Global Failure due to Buckling of Ice Plate
Cylindrical buckling, in which the deflection surface is a tran

lationary surface, can occur only if the ice plate is moving aga
a very long wall (d→`). In this case the plate behaves as a be
on elastic foundation, which is a one-dimensional problem,
the critical compressive normal force per unit width of the plate
known to be~e.g.,@8#! Ncr5k0ArD where coefficientk0 depends
on the boundary conditions. Its minimum value occurs for a se
infinite plate with a straight infinite free edge and isk051.

If the obstacle, such as the legs of an oil drilling platform, h
a finite dimensiond in the transverse direction, the buckling mod
is two-dimensional and more complicated. In any case, howe
dimensional analysis~@9,10#! suffices to determine the form of th
buckling formula and the scaling~@3,7#!.

There are five variables in the problem,Pcr , E8, r, h, d, and
the solution must have the formF(Pcr ,E8,r,h,d)50, whereE8

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug.
2000; final revision, July 19, 2001. Associate Editor: A. Needleman. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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5E/(12n2); and Pcr is the critical force exerted by the resistin
structure on the moving ice plate~Fig. 1~a!!. There are, however
only two independent physical dimensions in the problem, nam
the length and the force. Therefore, according to Buckingham’P
theorem of dimensional analysis~@9–11#!, the solution must be
expressible in terms of 522, i.e., 3 dimensionless parameter
They may be taken asPcr /E8hd, ArD/E8h andd/h. Because the
buckling is linearly elastic,Pcr /E8hd must be proportional to
ArE8/E8h andd/h. Denoting

sNcr
5Pcr /hd (2)

which represents the nominal buckling strength~or the average
critical stress applied by the face of the resisting structures on
moving ice plate!, and noting thatD5E8h3/12 with E85E/(1
2n2), we conclude that the buckling solution must have the fo

sNcr
5k~d/h!ArE8Ah (3)

wherek is a dimensionless parameter depending on the rela
diameter of the structure,d/h, as well as on the boundary cond
tions. Ford/h→` ~i.e., an infinite wall!, this must reduce@8# to
the critical stress for an infinite beam on elastic foundation loa
at the free end~vertically sliding end!. Therefore,k(0)/A1251 or
k(0)52), which represents the smallest possible value ofk for
anyd/h. This fact becomes obvious by imagining a strip of wid
d in the direction of movement to be separated from the rest of
ice plate; for that stripk051 ~if the ice in contact with the struc-
ture is free to slide vertically, Fig. 1~a!!, and re-attaching the res
of the plate cannot but increase the critical load.

An interesting property of~3! is that, for geometrically by simi-
lar structures~constantd/h!, sNcr

increases, rather than decreas
with ice thicknessh. So there is areversesize effect. Conse-
quently, the buckling of the ice plate can be the mechanism
failure only when the plate is sufficiently thin. The reason for t
reverse size effect is that the buckling wavelength~the distance
between the inflexion points of the deflection profile!, which is
Lcr5p(D/r)1/4 ~as follows from dimensional analysis, or from
nondimensionalization of the differential equation of plate buc
ling!, is not proportional toh; rather

Lcr /h}h21/4, (4)

i.e., Lcr decreases withh. This contrasts with the structural buck
ling problems of columns, frames, and plates, in whichLcr is
proportional to the structure size.~Despite the analogy betwee
axisymmetric buckling of an axially compressed cylindrical sh
and a floating ice, no size effect occurs for the shell becau
unlike rw , the equivalent foundation modulus of the shell sca
with h.!
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3 Global Failure due to Radial Cleavage Fracture
Another failure mechanism consists of a long radial cleav

crack in the ice plate, propagating against the direction of
movement~Fig. 1~b,c!!. The resistance of the plate against bei
cleaved causes the ice to exert on the structure a pair of trans
force resultantsF and a pair of tangential forcesT in the direction
of movement;T5F tanw wherew may be regarded as the frictio
angle. ForcesT have no effect on the stress intensity factorKI at
the crack tip.

First we will consider the asymptotic case of a a structure of a
very large sized producing a crack of a very long lengtha ~Fig.
1~b,c!!. LEFM must apply in this asymptotic case. To determinea,
we need to calculate the crack openingd caused byF. Consider-
ing the ice plate as infinite, we have~@12,13#!

KI5
F

h
A 2

pa
. (5)

The energy release rate is

G5
1

h F]P*

]a G
F

5
1

h

]

]a F1

2
C~a!F2G5

F2

2h

dC~a!

da
(6)

whereC(a) is the load-point compliance of forcesF. Upon using
~5! and Irwin’s relation~@14#!, we have at the same time

G5
KI

2

E
5

2F2

pEh2a
. (7)

Equating~6! and ~7!, we thus get

Fig. 1 „a… Buckling of ice plate pushing horizontally against a
fixed structure, „b,c,d … radial cleavage crack, and „e – g … diverg-
ing V-cracks
20 Õ Vol. 69, JANUARY 2002
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dC~a!

da
5

4

pEha
. (8)

This expression may now be integrated froma5d/2 ~the surface
of the structure, considered as circular, Fig. 1~b,c!! to a ~note that
integration froma50 would give infiniteC but would be mean-
ingless becausea cannot be less thand!. In this manner, we obtain
C(a), and from it the opening deflectiond :

d5C~a!F5
4F

pEh
lnS 2a

d D . (9)

If the radial cleavage fracture were the only mode of ice bre
ing, we would haved5d. However, as will be discussed late
there is likely to be at least some amount of local crushing at,
ahead, of the structure. Consequently, the relative displacem
between the two flanks of the crack is no doubt less thand. We
denote it asxd wherex is a coefficient less than 1. Upon settin
d5xd, ~9! yields

a5
d

2
expS pEhxd

4F D . (10)

~note thata/d is not constant but increases withd; hence, the
fracture modes are not geometrically similar, and so the LE
power scaling cannot be expected to apply!. Substituting~10! into
~5! and settingKI5Kc5AEGf ~Irwin’s relation, Kc5fracture
toughness of ice!, we obtain

2F

hApEGfd
5expS pEhxd

8F D . (11)

The pair of forcesF is related to loadP on the structure~P
52T, Fig. 1~c!! by a friction law, which may be written as

P52F tanw. (12)

where w is the friction angle. SubstitutingF5P/2 tanw and P
5sNhd into ~11!, we obtain, after rearrangements,

d

dc
5

1

t2 e1/t, t5
sN

hc
(13)

in which t is the dimensionless nominal strength, anddc andsc
are constants defined as

dc5
4Gf

px2E
, sc5

p

2
xE tanw. (14)

Equation ~13!, plotted in Fig. 2, represents the law of radi
cleavage size effect in an inverted form. The small-s
asymptotic behavior is the LEFM scaling for similar structur
with similar cracks:

for d!dc : sN'Adc /d. (15)

The plot of ~13! in Fig. 2 shows that the size effect is gettin
progressively weaker with increasing structure diameterd ~al-
though no horizontal asymptote is approached by the curve!. The
reason for this is that the crack is dissimilar, i.e., the ratio,a/d, of
crack length to structure diameter is not the same for differ
sizes but increases according to~10! with the structure size.~In
designing ocean platforms, it is nevertheless always adva
geous, with respect to the radial cleavage mechanism, to u
smaller number of larger legs, which has of course been in
itively followed in practice.!

So far our radial cleavage crack analysis has been base
LEFM. In other words, the length 2cf of the cohesive zone at th
tip of the radial cleavage crack was considered negligible co
pared toa. Let us now consider the opposite asymptotic case o
very small structure diameterd and a very short cracka such that
a!cf . In that asymptotic case, the crack faces up tox5a05a
2d/2 are subjected to uniform cohesive tractionsf t8 . Noting that
the stress intensity factor for a semi-infinite crack in an infin
Transactions of the ASME
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space caused by a pair of unit concentrated force acting on
crack faces at distancex from the crack tip isKI5(A2p/x)/h
~@12#!, we find thatKI caused by uniform tractionsf t8 is

KI f
52E

0

a2d/2A 2

px
f t8dx52 f t8A8a

p
. (16)

The stress intensity factor due to concentrated reactionF at dis-
tance a from the cohesive crack tip is, according to~5!, KIF
5(F/h)A2/pa. It is necessary that the total stress intensity fac
KIt5KIF1KI f

50. From this condition and the friction relatio
~12!, it follows that

P54ah ft8 tanw. (17)

To calculate the deflectiond f due to cohesive stressesf t8 , one
could use Green’s function. However, this leads to a complica
integral. Since a high accuracy is not needed, we prefer an
proximate calculation. To this end, we imagine the cohesive cr
lengthx to grow from 0 toa05a2d/2 while constant tractionsf t8
act along the entire crack length in front of the structure~and work
on the growing opening!. In view of ~16! and Irwin’s relation, the
total energy released during the imagined growth of this crac

P* 5E
0

a0 KI
2

E
dx5E

0

a0 1

E S f t8A8x

p D 2

dx5
4 f t8

2a0
2

pE
(18)

which is a function off t8 representing the complementary energ
According to Castigliano’s theorem, differentiation ofP* with
respect to the total cohesive forcea0h ft8 provides the displace
ment parameter on which the cohesive stressf t8 works, which is
the average crack-opening displacementv̄ f over the lengtha0 of
application off t8 ;

v̄ f5
1

a0h

]P*

] f t8
5

8 f t8a0

pEh
. (19)

Since we avoided Green’s function, we now need to approxim
the relationship betweenv̄ f and opening displacementv f at the
center of the structure,x5a ~Fig. 1~c!!. We may assume that th

Fig. 2 Size effect associated with radial cleavage fracture
„solid curve—LEFM solution, dashed curve—cohesive crack
solution …
Journal of Applied Mechanics
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face of the opened crack is approximately straight, which i
simplification widely used in materials science. Under that
sumption,v f5k f v̄ fa/a0 , wherekaf52 if the crack face remains
straight. Then, from~19!,

v f5
8 f t8

pE
k fa. (20)

The opening displacement 2vF due to the pair of concentrate
forces F has already been calculated in~9!; 2vF
5(4F/pEh)ln(2a/d). Compatibility of transverse displacemen
at the center of structure (x5a) requires that

2vF22v f5x. (21)

Substituting the foregoing expressions forvF andv f , and setting
F5P/2 tanw5sNhd/2 tanw, one obtains, after rearrangemen
the equation

lnS sN

2 f t8 tanw D 5k f1
pEx tanw

2sN
. (22)

This is a transcendental equation whose solutionsN5sN
0 , repre-

sents the average pressure applied on the area of the stru
facing the moving ice. Sinced andh do not appear in this equa
tion, the sN

0 value is a constant, represented in Fig. 2 by t
horizontal line. So, as expected, there is asymptotically no s
effect if d→`.

To obtain the approximated law of the size effect for the int
mediate sizes, the small-size and large-size asymptotic beha
must be suitably matched. Similar to many previous approxim
tions of quasi-brittle size effect~@13,14#!, the asymptotic matching
may be accomplished by replacing sized in ~13! with the expres-
sion (dr1d0

r )1/r where d0 is a constant. With this replacemen
~13! provides the following general approximate asympto
matching law for the size effect:

~dr1d0
r !1/r5

dc

t2 e1/t. (23)

Here r is an empirical constant, probably close to 1. Ford→`,
this equation asymptotically approaches the LEFM Eq.~13!, and
for d→0 the following equation for constantd0 is obtained:

d05ac~sc
2/sN

0 2!esc /sN
0

(24)

wheresN
0 is the solutionsN of ~22!. In analogy to other scaling

problems, the valuer 51 is often reasonable, and then~23! sim-
plifies to the size effect formula:

d5
dc

t2 e1/t2d0 . (25)

Equation~23! for the quasi-brittle size effect due to a horizont
load is plotted as the dashed curve in Fig. 2. The shape of this
documents the difficulty in deducing the size effect from sma
scale experiments. If the tests are confined to the nearly horizo
intial portion of the dashed curve, there is no way to predict
size effect at large sizes unless a realistic theory is employed

4 Compression Fracture of Ice Plate
As typically observed in the field, moving ice gets crushed

front of an obstacle, breaking up into chunks. The cause is lo
compression fracture of the material. Its initiation may be e
plained by sliding on inclined weak plains between ice crysta
which leads to axial splitting microcracks called the wing-t
cracks~for ice see, e.g., Schulson@15,16#! extending in the direc-
tion of compression for a certain finite length. This mechanis
however, explains only the generation of local compressive d
age in the material but does not explain to overall failure of
plate and the size effect.
JANUARY 2002, Vol. 69 Õ 21
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To produce overall breakup of ice, the damage must propag
As transpired in connection with studies of concrete and boreh
breakout in rock~@13,17#!, the propagation typically occurs in th
form of a narrow band consisting predominantly of axial splitti
microcracks~generated, e.g., by the wing-tip crack mechanism!.
The band of axial splitting microcracks can propagate either in
axial direction of the compressive stress, or laterally. The latte
shown in Fig. 3~a!, and the former in Fig. 3~b!.

In the spirit of fracture mechanics, one must estimate the en
release. Consider the plausible situation depicted in Fig. 3~a!,
where the band of a certain characteristic widthwc in the direction
of compression has inclinationcb and reaches to deptha below
the surface of plate. Formation of the band must evidently reli
the axial stresssN not only within the band area 12541, but als
in the adjacent zones 1231 and 4564. The boundary of the s
relief zone is considered to have a certain characteristic incl
tion ca , independent of the plate thickness. The combined are
the stress relief zone 43264 isa(wc1a/2 tanca1a tancb). Before
the formation of the damage band, the initial strain energy den
in this zone issN

2 /2E, and after the formation of the band it ma
be assumed as zero~more generally, one could quite easily tak
into account some finite residual strengths r of ice after crushing,
see@17#; but this is omitted since no information ons r is avail-
able!. Thus the total energy release caused by formation of
damage band per unit width is, approximately,

P* 5
sN

2

2E
aS wc1

1

2
a tanca1a tancbD . (26)

The rate of energy dissipation per unit width as the band pro
gates must be equal to the fracture energy of the band,Gb , which
equalsGfwc /sc whereGf is the fracture energy of the axial spli

Fig. 3 „a… Compression fracture of ice plate, „b… axial splitting
fracture, „c… size effects corresponding to „a… and „b…, and „d…
overall fracture of ice floe
22 Õ Vol. 69, JANUARY 2002
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ting microcracks in the band, andsc their average spacing. Energ
balance during the quasi-static extension of the band requires
the rate of energy release be equal toGf , i.e.,

]P*

]a
5

sN
2

2E
~wc1a tanca12a tancb!5Gb . (27)

Solving this equation forsN , we get, after rearrangements,

sN5saS 11
h

h0
D 21/2

(28)

in which the following notations are made:

h05
h

a

wc

~ tanca12 tancb!
, sa5A2EGc

wc
. (29)

Here we deliberately introduced the plate thicknessh even though
it cancels out of the equation. The reason is that it appears
sonable to assume the ratioa/h for plates of various thicknesse
to be approximately constant. In other words, the geometrie
the damage band at failure of the plates of various thicknesse
assumed similar. This assumption is based on experience
some other fracture problems, for which it was shown to lead
realistic results. Anyway, it is intuitively clear that it would b
unreasonable to assume that for thin plates the damage ba
maximum sN penetrates through most of the thickness and
thick plates penetrates only to a very shallow depth.

Equation~28!, plotted in Fig. 3~c!, is the same as the classic
size effect law proposed by Bazˇant @18# for quasi-brittle structures
failing after a long stable growth of tensile fracture. Among t
mechanisms explored here, it is the only one that can explain
size effect of ice thickness.

The ultimate cause of size effect in compressive~as well as
tensile! fracture is that the volume of the energy dissipation zo
i.e., the damage band, grows linearly with the distancea of propa-
gation while the volume of the energy release zone grows fa
than linearly, having a quadratically growing term that domina
for large sizes. Thus it is intuitively clear that if the stress in the
zone at failure were the same, energy balance could exist only
one size but not for other sizes~@14#!. So, in a larger structure the
stress in the quadratically growing zones~1231 and 4564 in Fig.
2~a!! must be less.

There is of course another possibility—namely that the dam
band grows axially, in the direction of compression, which lea
to a splitting failure~Fig. 3~b!!. In that case the stress in th
material on the sides of the crack band is not relieved, and so
energy release occurs only within the damage band itself. In
case, not only the energy dissipation but also the energy rel
are proportional to the lengtha of the band, which means tha
energy rates for the same failure stresssN can balance for any size
h. So, for the axial propagation, there is no size effect.

The axial growth is more likely because no new wing-tip crac
need to be nucleated. Therefore, at small enough sizes the
splitting of ice should prevail, which means that the splittin
mechanism corresponds in the logarithmic size effect plot~Fig.
3~c!! to a horizontal line starting below the curve of the size effe
law for lateral propagation of the damage band. However,
horizontal line must eventually cross the size effect curve a
certain critical sizehcr , above which the lateral propagation o
damage band must prevail, and then a size effect must exist.

The present analysis is similar to that made for concrete;
@17#, where various fine details are discussed~also @13,14#!.

Finally, an explanation of empirical parameterx introduced for
the cleavage fracture: It is presumed that the part (12x)d of the
cross section facing the ice movement undergoes compres
crushing. This part should be governed by Eq.~28!, and so the
force given by that equation needs to be added to the forcP
based on~12! and ~13!.
Transactions of the ASME
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5 Overall Fracture of Finite Ice Floe
Collision of a large ice floe with a fixed structure may caus

fracture of the whole floe. The floe is loaded by distributed ine
forces of its mass, but the problem may be treated as essen
quasi-static, owing to the low velocity of movement. Except
the loading by distributed forces, the problem is similar to fract
tests in the laboratory, especially the three-point bend beam~Fig.
3~d!!. Dempsey’s record-breaking tests on the Arctic Ocean n
Resolute can be regarded as an approximate reduced-scale
lation of this kind of fracture~@19,20#!. The analysis may follow
similar lines as presented, for instance, in@13# for other materials.
From that analogy it follows that the sizeL of the floe may cause
one of two types of size effect:

~1!
P

Lh
5S0S 11

Lr

L0
r D 21/2r

(30)

~2!
P

Lh
5S`S 11

rL b

L D 1/r

(31)

where P/Lh is the nominal strength of the whole floe
S0 ,L0 ,S` ,Lb are constants that can be calculated by fracture
chanics; andr is a parameter whose value is normally between
and 2.

The first kind of size effect, which agrees very well with Dem
sey et al.’s@19# field tests in the Arctic, applies when a large cra
in the floe can form before the overall fracture of the floe tak
place. The second kind applies to failures at fracture initiati
exemplified by the test of modulus of rupture~bending strength!,
and is pertinent if the maximum load is attained before a sta
finite crack can develop~e.g, by means of the radial cleavag
mechanism!.

6 Comments on Some Periodic Failure Mechanisms
According to observations, diverging V-shaped cracks may a

form ahead of an obstacle~e.g.,@21#, ch. 7!; Fig. 1~e,f!. To esti-
mate in a simple manner a rough approximate value of com
mentary energyP* of an infinite ice plate after formation of suc
cracks, we may assume that the forceP from the structure pro-
duces stress only within the wedge between the cracks~Fig. 1~g!!.
From a well-known solution~@22#!,

s r52Pku cosw/rh, sw5s rw50 (32)

wheres r , sw , ands rw are the stress components in polar co
dinatesr, w, and

ku51Y S u1
1

2
sin 2u D , (33)

u being the inclination angle of the cracks~Fig. 1~f !!. The dis-
placement atr 5d/2 ~structure surface! is

u5E
d/2

` s r

E
dr5

Pku

Eh
ln

2a

d
. (34)

ThenP* 5Pu/25(P2ku/2Eh)ln(2a/d). The complementary energ
before fracture may be estimated as the value ofP* for u5p,
i.e., P0* '(P2/2pEh)ln(2a/d). The total energy release due
V-cracks in the ice plate isDP* 5P* 2P0* , and the derivative
]DP* /]a at constantP must be equal to 2hGf . This condition
yields

P'2hA EGf

p212ku
Aa. (35)

To determine crack lengtha and angleu, one may use two con
ditions: ~a! the opening displacement at the crack mouth,d, must
be equal toxd/(2 cosu), which means that the load-point dis
placement of forceP must beu5(xd/2)tanu, and~b! the expres-
sion for P should be minimized with respect tou. These two
Journal of Applied Mechanics
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conditions, however, make the solution quite complicated. We w
not pursue it here because of this and also because of two u
solved questions:~1! An axial cleavage crack may be also prese
~@5#!, and it may form either before or after the V-cracks.~2!
Simultaneous compression crushing is very likely in the case
V-cracks, which makes the value ofx, and thus the lengtha of
V-cracks, rather uncertain.

Unlike the cleavage fracture, the V-shaped cracks can oc
only from time to time. They do not represent a steady-st
mechanism that would accommodate continuous movement o
ice.

Other failure mechanisms occur in the case of an inclined f
of the fixed structure, or in the case of an icebreaker~@5#!. These
mechanisms involve axial bending cracks as well as bend
cracks normal to the direction of motion. Studying the action of
icebreaker, Goldstein and Osipenko@3# considered periodic for-
mation of LEFM bending cracks at some distance in front of
icebreaker, normal to the direction of movement. They limit
attention to one-dimensional cylindrical bending of the ice pl
and did not consider simultaneous formation of axial or oth
cracks.

7 Conclusions„From Parts I and II …

1. The known mechanism of failure of a floating ice plate su
jected to a vertical load can be used in an approximate
ergy analysis of quasibrittle fracture. The results do not d
agree with the limited field experiments that exist. Th
approximately agree with previous numerical simulatio
and confirm that for large ice thicknesses there is a str
size effect, approaching the size effect of LEFM. Asympto
matching leads to a simple formula for the size effect, wh
is similar to the size effect law proposed in 1984 by Bazˇant.

2. Simplified fracture analysis of the nominal strength of i
plate pushed against a fixed structure brings to light sev
possible mechanisms of failure with size effects due to
thickness, the diameter of the structure and, if the size of
ice floe is finite, the size of the floe. Buckling of the floatin
plate causes a reverse size effect of ice thickness~i.e., the
nominal strength increasing with ice thickness! and therefore
plays any role only for sufficiently thin ice. Radial cleavag
of the ice plate against the direction of ice movement cau
a size effect of structure diameter which follows linear ela
tic fracture mechanics~LEFM! for small enough diameters
and becomes progressively weaker with an increasing di
eter. Compression fracture, with ice crushing localized in
transversely propagating bands, causes a size effect o
thickness that follows approximately the classical size eff
law proposed in 1984 by Bazˇant. The overall fracture of a
finite ice floe causes a size effect of the floe size, followi
again the same size effect law.

3. The present approach contrasts with the classical appro
based on either plastic limit analysis or elastic analysis w
a strength limit, both of which lead to no size effect.
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Microstructural Randomness
Versus Representative Volume
Element in Thermomechanics
Continuum thermomechanics hinges on the concept of a representative volume e
(RVE), which is well defined in two situations only: (i) unit cell in a periodic microstru
ture, and (ii) statistically representative volume containing a very large (mathematic
infinite) set of microscale elements (e.g., grains). Response of finite domains of ma
however, displays statistical scatter and is dependent on the scale and boundary c
tions. In order to accomplish stochastic homogenization of material response, s
dependent hierarchies of bounds are extended to dissipative/irreversible pheno
within the framework of thermomechanics with internal variables. In particular, the fr
energy function and the dissipation function become stochastic functionals whose s
tends to decrease to zero as the material volume is increased. These functionals are
to their duals via Legendre transforms either in the spaces of ensemble average vel
or ensemble-average dissipative forces. In the limit of infinite volumes (RVE limi
above) all the functionals become deterministic, and classical Legendre transform
deterministic thermomechanics hold. As an application, stochastic continuum da
mechanics of elastic-brittle solids is developed.@DOI: 10.1115/1.1410366#
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1 Introduction
Presence of dissipative phenomena in mechanics of solids

fluids necessitates a formulation of continuum mechanics con
tent with principles of thermodynamics; such a theory is brie
called thermomechanicsor continuum thermodynamics. As lu-
cidly and comprehensively elaborated in a recent book by Mau
@1#, this challenge conventionally leads to a consideration of
of four continuum thermodynamics:

• thermodynamics of irreversible processes~TIP!;
• thermodynamics with internal variables~TIV !;
• rational thermodynamics~RT!; and
• extended~rational! thermodynamics~ET!.

A feature common to all of these approaches is a postulat
existence of a representative volume element~RVE!. In other
words, we are looking here at deterministic, homogeneous c
tinuum theories, without clear account of random microstructu
which are, in fact, prevalent in real materials. While we recogn
here that some statistical treatments were carried out as a b
from micro to macro levels for select variants of the abo
theories~e.g.,@2,3#!, such studies were concerned with providin
foundations from the standpoint of statistical physics directly
the level of the RVE, without making clear what the size
the RVE actually was. On the other hand, homogenization p
cedure invoked to pass to the RVE in studies of plasticity a
damage~e.g., @4,5#! always involves a periodic microstructure
see also~@6#! for other physical problems, and~@7#! for elastic/
inelastic problems in composites. Some finite scale periodi
in random microstructures is also invoked in theoretical and
merical studies of the RVE size~@8,9#!; in fact, this assumption
allows homogenization of elastic materials on very small len
scales.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 3
2000; final revision, June 12, 2001. Associate Editor: J. W. Ju. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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While in plasticity the approach to RVE in a random micr
structure may be rapid~@10#!, this is not so for damage phenom
ena where presence of scatter is evident for even the largest s
mens that can be handled in the laboratory, e.g.,~@11,12#!. In fact,
the dichotomy between statistical damage models motivated
such observations and continuum damage mechanics based o
deterministic TIV formalism is perceived as one of the grand ch
lenges of damage mechanics~@13,14#!. This is one of major mo-
tivations of this paper.

As theoretical models we first consider strict-sense and w
sense stationary random fields, possessing ergodic prope
Many models of microstructural randomness—e.g., Boolean m
els and tessellations—possess such homogeneity and erg
characteristics, and they are highly desirable in stochastic hom
enization. Real materials, however, often lack these nice beh
iors, and, as illustrated by measurements on machine made p
one may have to work with quasi-stationary and quasi-ergo
random fields.

As a guidance in setting up a statistical volume element~SVE!
and its deterministic limit, the RVE, in thermomechanics we ta
the work on elastic microstructures carried out over the last
cade, that relies on the Hill condition~@15#!. In essence, it says
that the RVE response is independent of the type of bound
conditions applied to it~i.e., uniform stress or uniform strain o
their orthogonal combination!. For finite-size—which we call
mesoscale—material domains the Hill condition leads to thre
types of boundary conditions~@16#!, and three types of apparen
responses: uniform kinematic, uniform traction, and unifo
mixed ~orthogonal!. It follows that in the case of dissipative be
haviors, we must primarily consider boundary conditions of u
form dissipative force or uniform velocity.

As continuum thermodynamics setting we take TIV, and,
particular, its variant due to Ziegler@17# ~also@18#! which defines
a broad class of continuous media from the free energy and
sipation functions~@19#!. In many cases, the uniform kinemat
and uniform traction boundary conditions, respectively, bound
effective ~in the macroscopic/global sense! dissipative response
from above and below; the larger are the mesoscale domain
the material considered, the tighter are the bounds. These bou
define a sequence of SVE, convergent to the RVE, and servin
a basis of statistical continuum models. We discuss the bound
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thermal conductivity and damage phenomena. While mathem
cally at any finite mesoscale the bounds are distinct, the appro
to RVE, with increasing window size, to the effective~macro-
scopic! response, depending on the dissipative process consid
may be very rapid, moderate, or very slow. Furthermore, the
energy may display a different scaling trend than the dissipa
function for a given microstructure.

2 Representative Volume Element„RVE… Postulate
and Structure of Random Media

2.1 Homogeneous and Ergodic Random Media. Let us
first recall the classical assumption of a representative volu
element~RVE! according to Hill @15#: it is ‘‘a sample that~a!
is structurally entirely typical of the whole mixture on averag
and~b! contains a sufficient number of inclusions for the appar
overall moduli to be effectively independent of the surfa
values of traction and displacement, so long as these va
are ‘macroscopically uniform.’ ’’ In other words, we nee
respectively:

~a! statistical homogeneityandergodicityof the material; these
two properties assure the RVE to bestatistically represen-
tative of the macroresponse~e.g.,@20,21#!;

~b! some scaleL of the material domain, sufficiently large rela
tive to the microscaled ~inclusion size! so as to ensure the
independence of boundary conditions.

Mechanics of random media, together with probability theo
provides a rigorous setting for study of these issues~e.g., @22#!.
That is, the field problem of random medium

B5$B~v!;vPV% (2.1)

is governed by an equation

L~v!u5f vPV (2.2)

accompanied by appropriate boundary and/or initial conditio
HereL~v! is a random field operator~with randomness caused b
say, elastic moduli being a random field!, u is a solution field, and
f is forcing function. Parametrization byv ~element of the sample
spaceV, endowed with a probability measureP! indicates the
source of uncertainty. Clearly, there are two more basic way
introduce randomness in a mechanics problem:

• randomness in the forcing function—replacing~2.2! by Lu
5f(v)—as exemplified by problems of random vibrations

• randomness of boundary and/or initial conditions.

As we are interested here in the case described by~2.2!, we
note that each of the realizationsB(v) follows laws of determin-
istic mechanics in that it is a specific heterogeneous mate
sample. The problem of setting up the RVE of volumeV5LD ~D
is space dimension!, in the sense of~a! and~b! above, in a global
boundary value problem on length scalesLmacro is illustrated with
the help of Fig. 1; of course only oneB(v) is shown. In essence
we want

^L21&21u5f (2.3)

with independence of boundary conditions as posited by H
condition, on length scaleL satisfying

d!L!Lmacro. (2.4)

If that is the case, one can then simply deal with a determini
continuum thermomechanics problem on scaleLmacro. Hereinafter
we assume the microstructure to be characterized by a single
relation radiusl c , such as the mean separation between the fib
in a fiber-matrix composite, or mean grain sized.

Both inequalities in~2.4! jointly ensure separation of scales
the deterministic continuum mechanics model. The first inequa
may be relaxed tod,L because we may be considering a micr
26 Õ Vol. 69, JANUARY 2002
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structure with periodic~or nearly periodic! geometry, though pos-
sessing some randomness on the level of the unit cell: see
tions ~2.8!–~2.9! below.

Evidently, the material property~or properties! Q of B(v) en-
tering the continuum mechanics model are to be described b
random field over theD-dimensional space (D51, . . . ,3)

Q:RD3V→R1. (2.5)

There exist two types of statistical homogeneity: strict-sen
stationarity~SSS! and wide-sense stationarity~WSS!. In the first
case we are assured of the invariance of any finite-dimensio
probability distribution ofQ with respect to arbitrary shifts

Fx1 , . . . ,xm
~u1 , . . . ,um!5Fx11x8, . . . ,xm1x8~u1 , . . . ,um!

;x8PRD. (2.6)

This is a very restrictive property. On the other hand, in the W
case, we have invariance of the mean only with respect to s
shifts, along with the dependence of two-point correlation fun
tions on the interpoint separations only, that is~^ & denotes en-
semble average!,

• mean^Q(x)&5const;
• for any two points x1 ,x2PRD, the correlation function

KQ(x1 ,x2)[^@Q(x1)2^Q(x1)&#@Q(x2)2^Q(x2)&#& satis-
fies

KQ~x1 ,x2!5KQ~x12x2!. (2.7)

Clearly, a much wider class of microstructures is described
WSS random fields then SSS random fields, and, as we shal
in the next sections, the former are sufficient for the RVE.

Following Eq.~2.4!, we mentioned the microstructure with pe
riodic geometry, possessing some randomness on the level o
unit cell. An appropriate model is then offered by astrict-sense
~SS! cyclostationaryrandom field, which, for a planar system o
squareL3L unit cells, is stated as

Fig. 1 Passage from a discrete system of tungsten-carbide
„black … and cobalt „white … „a… to an intermediate continuum
level „b… involving a mesoscale finite element, that serves as
input into the macroscale model accounting for spatial nonuni-
formity. Figures „a… and „b… are generated by a Boolean model
of Poisson polygons and a diffusion random function, respec-
tively „†45‡….
Transactions of the ASME
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Fx11mL , . . . ,xm1mL~u1 , . . . ,um!5Fx1 , . . . ,xm
~u1 , . . . ,um! (2.8)

whereL is a shift vector~in any combination of directions alon
the coordinate axes!, andm is any integer. Andy Warhol’s 1972
creationS&P Green Stampsis helpful in visualizing this.

When the microstructure has an imperfectly periodic geome
in addition to possessing some randomness on the level of the
cell, then one should use awide-sense~WS! cyclostationaryran-
dom field, which for a system of square unit cells is stated as

^Q~x1mL !&5^Q~x!&
(2.9)

K~x11mL ,x21mL !5K~x1 ,x2!

whereL is the same as in~2.8!, andm is any integer.
Returning to the WSS fields, we note that, to ensure the equ

lence of macroscopic responses between all the realizations o
ensembleB, an ergodic random field is required. That is, we wa
any realization to be sufficient to get the ensemble average f
the spatial average~denoted by2!

^Q~x!&5E
V

Q~v!dP~v!5 lim
V→`

1

V E
V
Q~v,x!dV5Q~v!.

(2.10)

In practice~2.10! holds only with some accuracy, and the limitin
processV→` cannot truly be carried out. The latter can be d
continued in the regions whose dimensionL5V1/D is large com-
pared with the correlation radiusl c , so that~2.4! is rewritten as

l c!V1/D;L!Lmacro. (2.11)

We assumeKQ to satisfy~with probability one! ergodic prop-
erties with respect to the mean and the correlation function, th

lim
V→`

1

V E
V
Q~x,v!dV5m5^Q~x,v!&

(2.12)

lim
V→`

1

V E
V
~Q~x,v!Q~x1Dx,v!!dV5KQ~Dx!1m2.

In practice, the left and right-hand sides of~2.12!1 and ~2.12!2
would be replaced, respectively, by a spatial average from a fi
number of sampling points taken over one realizationv

Q~v!5
1

N (
n51

N

Q~xn ,u! (2.13)

and an ensemble average from a finite number of realizationv
taken at one sampling point

^Q~x!&5
1

N (
n51

N

Q~x,vn!. (2.14)

The ergodicity of these estimators—i.e.,Q(x,v)5^Q(x,v)&—is
assured, for sufficiently largeN, by the property of the correlation
function

lim
uDxu→`

KQ~Dx!50. (2.15)

This, for instance, is the case with Voronoi mosaics based o
Poisson point field, both in two dimension and three dimensi
~@23#!; our Fig. 1~a! employs such a process. Many random m
crostructure models are set up on the basis of point fields, or t
modifications. Real materials, however, oftentimes challenge
with spatially inhomogeneous patterns. The models can then
ily be generalized by taking spatial inhomogeneity, but the c
cepts of homogeneity and ergodicity—especially from the sta
point of measurements—need to be relaxed.

2.2 Quasi-Homogeneous and Quasi-Ergodic Random Me
dia. A typical example of inhomogeneous fluctuations in me
sured material properties is shown in Fig. 2. In particular, we
Journal of Applied Mechanics
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here elastic modulus, breaking strength, strain to failure, and
sile energy absorption of paper specimens sampled in an arra
the plane of paper web (D52) manufactured on a modern, high
speed paper machine. With reference to~2.5!, E, smax, «max and
TEA form a four-component vector random fieldQ:R23V
→R4. A statistical analysis of maps such as Fig. 2, in the e
semble sense, reveals spatial inhomogeneity ofQ1[E in the
x1-x2–directions~so-called machine and cross directions of t
paper web!. This is not surprising given the fact that a paper w
may be tens of thousands of kilometers long between mainten
intervals on a papermaking machine.

It turns out that these material inhomogeneities are too gen
to be described by locally homogeneous random fields, tha
fields whose variance of increments taken at different locati
depends on the vector joining the locations, but not their abso
values. Of course, besides paper, numerous natural and man-
materials display such global~i.e., ‘‘slow’’ relative to ‘‘fast’’ mi-
croscale fluctuations! spatial inhomogeneities: cortical bon
changing into cancelloous bone, ice fields~@24#!, pig-iron cast into
ingots, etc. If we letLQ be the characteristic space scale of t
variancesQ , the mean field̂Q&, and the correlation coefficientK,
either of the following, or some intermediate situation, would a
ply

LQ5Lmacro or LQ!Lmacro. (2.16)

In order to deal with such variations in the material one sho
employ ~instead of WSS! a quasi-WSS random field, just as the
so-called quasi-homogeneous fields—especially in the vert
direction—in atmospheric turbulence~@25#!. Thus, we write

K~x1 ,x2!5Ki j ~x1 ,x2!5s i~x1!s j~x2!r i j ~x1 ,x2!

5sQS R1
r

2DsQS R2
r

2D r~r ,R! (2.17)

where r5x12x2 and R5(x11x2)/2. Keeping in mind the con-
cept ofLQ , for quasi-WSS fields we have

l c!LQ (2.18)

and ~2.17! is approximated by

K~r ,R!5sQ
2 ~R!r~r ,R!. (2.19)

If we want to estimate the properties of RVE of volumeV from
a single realization of the quasi-WSS random field, we effectiv
require it to bequasi-ergodic. The latter concept means the ra
dom field should be ergodic in volumes small as compared to
characteristic length scalesLQ of variation of the field statistics,
but ~2.18! and ~2.16! should still hold:

d' l c!V1/D;L!LQ'Lmacro or LQ!Lmacro. (2.20)

We conclude that the RVE’s microstructure is statistically rep
sentative ifV is sufficiently small for fields under consideration
be statistically homogeneous and ergodic within its confines, a
at the same time, ‘‘the volume is so large that the fieldQ within V
undergoes sufficient spatial fluctuations.’’ The situation is ad
tionally complicated by a possibilityLQ!Lmacro.

Thus, the following key problem arises: the separation of sca
d andL may be too large to allow the satisfaction of both stro
inequalities! in ~2.20!1 . With reference to Fig. 1, passage fro
the random microstructure in Fig. 1~a! to a homogeneous con
tinuum may require length scalesL that are too large for entry into
the macroscale problem of Fig. 1~c! occurring on scalesLmacro.
As a compromise, some intermediate random continuum appr
mation of Fig. 1~b! may have to be introduced, but a quantitati
assessment of the approach to a homogeneous continuum can
be made with the help of a mechanics problem.
JANUARY 2002, Vol. 69 Õ 27
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Fig. 2 Sampling of paper properties via a gray-scale plot of „a… elastic modulus E lbf Õin; „b… breaking
strength smax in lbf Õin; „c… strain to failure «max in percentage and „d… tensile energy absorption TEA
lbf Õin. All data are for a 25 Ã8 array of 1 9Ã19 specimens tested in the x -„machine … direction. The ranges
and assignments of values are shown in the respective insets.
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3 Hill Condition in Thermomechanics, and Mesoscale
Response

The RVE response in TIV is described by the free energyC and
dissipation functionF, both of which are scalar products

C[
1

2
s•«e F5F th1F intr>0

(3.1)

F th[2q•¹T/T F intr[Y• ā̇5sv
•de1s•dp1A•ȧ

where the Clausius-Duhem inequality expresses the second
of thermodynamics withF th being the thermal dissipation an
F intr the intrinsic dissipation. The latter quantity is a scalar pro
uct of the dissipative forceY with the velocityā̇ ~rate of the state
variablea!. As an example,F intr is taken to involve viscous, plas
tic and internal effects. Thus,s is Cauchy stress,sv is viscous
9, JANUARY 2002
law

d-

stress,A force associated to internal dissipative process,«e is
elastic strain,de is elastic deformation rate,dp is plastic deforma-
tion rate,ȧ is rate of internal parameters,q is heat flux, andT is
temperature.

The problem we are facing is one of dependence of constitu
response on scaled. That is, we want to be able to say somethi
about the functionalsCd and Fd for the ensembleBd
5$Bd(v);vPV% where the scaled is finite rather than infinite—
below the RVE limit; this is a particular case of~2.2!. Such issues
were addressed extensively for linear elastic materials~e.g.,@26–
31#!, for nonlinear elastic materials~@32,33#! as well as for vis-
coelastic and damage phenomena~@34#!; see also further refer-
ences in these works.

We recall, with reference to these papers, that properties o
elastic body can be defined from a mechanical standpoint—
Transactions of the ASME
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via Hooke’s law—or using energy—i.e., a Clapeyron type of f
mula. Both approaches are equivalent for a homogeneous ma
but not necessarily so for a heterogeneous one. Therefore, by
ogy, in the case of a linear dissipative behavior, the mechan
approach may involve a statement like

Ȳ5Cmā̇ (3.2)

which leads to an apparent, mechanically defined propertyCm ,
Ȳ i j being the resultant volume average dissipative force. Al
nately, it may involve

ā̇5SmȲ (3.3)

which leads to an effective propertySm , ā̇ being the resultant
volume average velocity.

On the other hand, the energy approach is stated as a vo
average of the dissipation

F̄5
1

2
Yȧ (3.4)

or a volume average of the velocity

F̄5
1

2
ā̇•Ce• ā̇. (3.5)

Clearly, when force and velocity fields are written asY5Ȳ
1Y8 and ȧ5 ā̇1ȧ8, whereY8 and ȧ8 are zero-mean fluctuations
and next, when~3.2! is recalled,~3.4! becomes

F̄5
1

2
Ȳā̇1

1

2
Y8ȧ85

1

2
ā̇Cmā̇1

1

2
Y8ȧ8. (3.6)

A comparison of~3.5! with ~3.6! shows thatCm is identical with
Ce providing

Y8ȧ850 (3.7)

or, equivalently,

Ȳ• ā̇5Y"ȧ50 (3.8)

which may be called theHill condition for dissipative processes.
For an unbounded space domain~d→`!, ~3.8! is trivially satis-

fied, but for a finite bodyBd(v) it requires that the body be
loaded in a specific way on its boundary]Bd . Following Hazanov
and Amieur @35#, from ~3.8!, and employing the Green-Gaus
theorem, we find a necessary and sufficient condition for~3.8!

Y•ȧ2Ȳ• ā̇50⇔E
]Bd

~ t~x!2Y0
•n!•~v~x!2ȧ0

•x!dS50 (3.9)

whereY plays the role of stress~e.g.,sv of ~3.1!! and ā̇ the role
of conjugate strain rate. In case of a process described by inte
variables,~3.9! is a requirement of its spatial homogeneity.

Now, relation~3.9!2 distinguishes three types of boundary co
ditions on the mesoscale:uniform kinematic~also called essential
or Dirichlet! boundary condition

v~x!5ȧ0
•x ;xP]Bd (3.10)

uniform traction~natural, or Neumann! boundary condition

t~x!5Y0
•n ;xP]Bd (3.11)

uniform kinematic-traction~also called orthogonal-mixed! bound-
ary condition

~v~x!2ȧ0
•x!•~ t~x!2Y0

•n!50 ;xP]Bd . (3.12)

Each of these boundary conditions results in a differentappar-
ent response. Henceforth, we focus on the first two condition
because they provide bounds on the response under the third
For any realizationBd(v), a window’s response on the mesosca
~d finite! is, under these definitions, nonunique—because the
sponse under~3.10! is not an inverse of the response under~3.11!
Journal of Applied Mechanics
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almost surely~i.e., with probability one!. Just as in elasticity stud
ies, we use the term ‘‘apparent’’ to distinguish the mesoscale pr
erties from the effective~macroscopic, global, or overall! ones. In
the latter case, the fluctuations disappear in the limitd→` be-
cause of the ergodicity assumption of previous section.

We assume the composites to be made of just one size,d, of
inclusions; we exclude slips and cracks. In the following it will b
convenient to work with a nondimensional parameter

d5
L

d
(3.13)

that characterizes any property associated with the windows s
as those shown in Fig. 2. We shall refer to the cased,` as a
mesoscale, as opposed tod→` which is called amacroscale. d'1
signifiesmicroscale, or a micro-element~@21#!.

4 Thermal Conductivity in Random Media
Let us first consider thermal conductivity, in a stationary sta

in a two-dimensional random medium in thex1 , x2-plane, gov-
erned locally by the Fourier’s law

qi52Ki j ~x,v!T, j . (4.1)

This paper’s leitmotiv ‘‘microstructural randomness versus
RVE postulate’’ leads us, with reference to research papers m
tioned in Section 3, to state two principal results in this area:

• order relation for any bodyB(v)PB

~Rd
n~v!!21<K d

e~v! ;d (4.2)

• hierarchy of bounds for the ensembleB

^Rd8
n &21<^Rd

n&21<Keff<^K d
e&<^K d8

e & ;d8,d. (4.3)

The inequalities between any two second-rank tensorsA and B
are understood ast"B"t<t"A"t, ;tÞ0. Rd

n(v) and K d
e(v) in the

above are apparent resistivity and conductivity tensors obtain
respectively, under uniform natural (q(x)5qi

0ni) and uniform es-
sential (T(x)5T,i

0xi) boundary conditions applied to the bounda
]Bd of Bd(v).

Clearly, the hierarchy of bounds~4.3! may be expressed in
terms of the apparent dissipation functionFd(¹T) and its dual
Fd* (q̄)

^Fd8* ~q0!&<^Fd* ~q0!&<Feff~¹T0!<^Fd~¹T0!&

<Fd8~¹T0! ;d8,d (4.4)

where, by virtue of ergodicity and stationarity assumptions,
have

Fd5`* ~q0!5F* eff~q0!5Feff~¹T0!5Fd5`~¹T0!. (4.5)

In other words, in~4.5! we have several equivalent statemen
effective, macroscopic, infinite size, etc. This RVE situation
~d→`! is approached in practice only with some accuracy a
finite d. The actual choice of accuracy—be it, say, two percent—
up to the researcher working on a given problem.

The joint dependence of material response on scaleand on
choice of independent variable~i.e., ¹T or q! leads to a graphic
representation of dissipation surfaces in the space of volu
averaged velocityā̇ ~i.e., thermal gradient¹T! or forceȲ ~respec-
tively, heat fluxq̄! in Fig. 3. Note that¹T5¹T0 andq̄5q0 for a
body with spatially continuous temperature and heat fields.
pending on how we take ensemble averages~@36#!; we arrive at
these Legendre transforms for finite-sized bodies:

~i! case ofā̇5ȧ0 being an independent variable

Fd* ~^Ȳ&!1^Fd~ ā̇…&5^Ȳ&• ā̇. (4.6)
JANUARY 2002, Vol. 69 Õ 29
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^Fd* ~Ȳ!&1Fd~ ā̇!5Ȳ•^ ā̇&. (4.7)

In the d→` limit ~4.6!–~4.7! become

F* eff~Ȳ!1Feff~ ā̇!5Ȳ• ā̇. (4.8)

Unfortunately, these Legendre transforms are not reversible
cause, with reference to heat conductivity, uniform boundary c
dition with ¹T5¹T0 yields a different apparent response fro
that under nonuniform boundary condition of the same m
value ¹T. This, and the analogous observation on the natu

Fig. 3 Thermodynamic orthogonality in „a… the spaces of ve-
locities a˙̄d and ensemble average forces ŠȲd‹ on mesoscale d,
with DȲd showing scatter in Y ¯

d ; „b… the spaces of velocities a ˙̄
Æ ǡ` and ensemble average forces Y ÆȲ` on macroscale,
where the scatter in a ˙̄d and Ȳd is absent; „c… ensemble-average
velocities Š ǡd‹ and forces Ȳ d on mesoscale, with D ǡd showing
scatter in a˙̄d . In all the cases, dissipation functions F and re-
spective duals F* , on mesoscale „parametrized by d… or mac-
roscale „parametrized by `… are shown.
30 Õ Vol. 69, JANUARY 2002
be-

Fig. 4 Antiplane responses of a matrix-inclusion composite,
with 35 percent volume fraction of inclusions, at decreasing
contrasts: „a… C „ i …ÕC „m …Ä1, „b… C „ i …ÕC „m …Ä0.2, „c… C „ i …ÕC „m …

Ä0.05, „d… C „ i …ÕC „m …Ä0.02. For „b–d…, the first figure shows re-
sponse under displacement b.c.’s «1

0, while the second one
shows response under traction b.c.’s s1

0Äs̄1 computed from
the first problem.
Transactions of the ASME
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boundary condition, is illustrated in terms of the boundary dis
butions for two basic types of boundary value problems on
matrix-inclusion composite in Fig. 4. In light of Section 3, w
might also set up a reversible Legendre transformation in the
of uniform orthogonal-mixed boundary conditions on mesosc
although there still remains a nonunique choice of the actual s
of the Y0,ȧ0-loading.

For the relations~4.6!–~4.7! one needs to assume that, for ea
specimenBd(v),
~i! the functionFd( ā̇,v) depends onā̇ alone, and is star-shaped
convex, and homogeneous of degreer

ā̇i

]

] ā̇i

Fd~ ā̇,v!5rFd~ ā̇,v!. (4.9)

~ii ! the functionFd* (Ȳ,v) is star-shaped, convex, and homog
neous of degreer

Ȳ i

]

]Ȳi

Fd
IL~Ȳ,v!5rFd* ~Ȳ,v!. (4.10)

Note thatFd( ā̇,v) andFd* (Ȳ,v) are almost surely not inverse
of one another because perfectly homogeneous domains of m
rial carry probability zero in theV space.

It is of interest to note here that the conventional Onsag
Casimir reciprocity relations—that apply to Fig. 3~b!—need to be
reconsidered depending on whether we work in the space of t
mal gradients or the space of heat fluxes for finite-sized bodie
Figs. 3~a! and ~c!. Thus, in the first case we actually have tw
choices: when we are either on the surface^Fd( ā̇)& of Fig. 3~a!

]^Ȳi&

] ā̇ j

5
]^Ȳj&

] ā̇i

(4.11)

or on the surfaceFd(^ ā̇&) of Fig. 3~c!

]Ȳi

]^ ā̇ j&
5

]Ȳj

]^ ā̇i&
. (4.12)

When working in the space of heat fluxes we also have
choices: when we are on the surfaceFd* (^Ȳ&) of Fig. 3~a!, we
have

] ā̇i

]^Ȳj&
5

] ā̇ j

]^Ȳi&
(4.13)

while on the surfacêFd* (Ȳ)& of Fig. 3~c!, we have

]^ ā̇i&

]Ȳj

5
]^ ā̇ j&

]Ȳi

. (4.14)

In ~4.12!–~4.13! averaging is to be conducted prior to differenti
tion. Noting the well-known analogy between the antiplane sh
elasticity and the in-plane conductivity~Table 1!, we see that all

Table 1

Thermal Conductivity Antiplane Shear Elasticity

Temperature,T Displacement,u
Temperature gradient,gi[T,i Strain,« i5ui ,3
Heat flux through a boundary,q5qini Traction at a boundary,t5s i3ni
Heat flux,qi Cauchy stress,s i3
Conductivity,2Ki j Stiffness,Ci3 j 3
Resistivity,Ri j Compliance,Si3 j 3
Thermal dissipation,
F/2T5qiT,i /25T,iKi j T, j /2

Strain energy,
C5s i« i /25« iCi3 j 3« j /2

~Dual! thermal dissipation,
F* /2T5qiRi j qi /2

Complementary strain energy,
C* 5s iSi3 j 3s j /2
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the results above apply to the antiplane elasticity of a tw
dimensional random medium of the same microstructure,
governed locally bys i35Ci3 j 3« j 3 .

This analogy confirms that¹T should be taken as a velocity
like variable andq̄ as a force-like variable in the thermomechani
of random media, which choice would reverse the roles of th
variables conventionally assigned in TIV., but does agree with
Also, we note that whatever was said above for the irrevers
thermodynamic process of heat conduction does also hold for
antiplane elasticity, and hence Fig. 3 may be interpreted in te
of the strain energies in the spaces of strains and stresses.

A very wide class of elastic/dissipative materials of nonline
type may be obtained by postulating the local behavior to obey
thermodynamic orthogonality~@17,37#! as expressed by Fig. 3~b!.
The thermodynamic orthogonality, as well as the entire proced
of derivation of constitutive laws from the free energy and d
sipation functions, are of primary interest with respect to mater
with dissipative processes described by the intrinsic diss
tion F intr rather than the thermal dissipationF th above. The next
section, therefore, discusses thermodynamic orthogonality
mesoscale.

5 Thermodynamic Orthogonality on Mesoscale

5.1 Quasi-Homogeneous Dissipation Functions.A wide
class of dissipative processes is described by dissipation func
Fd( ā̇,v) of quasi-homogeneous type~@27#!. Following the gen-
eral framework given in~@36#!, we now consider the apparen
behavior to be described by dissipation functions of that type
mesoscale, so thatFd( ā̇,v) pertains to a finite-sized bodyBd(v)

ā̇i

]

] ā̇i

Fd~ ā̇,v!5 f ~Fd~ ā̇,v!! (5.1)

where functionf is arbitrary. This, of course, implies that th
mesoscale dissipation functions in the space of dissipative for
Fd* (Ȳ,v), are quasi-homogeneous too, that is

Ȳi

]

]Ȳi

Fd* ~Ȳ,v!5g~Fd* ~Ȳ,v!!. (5.2)

Given the nonuniqueness of the mesoscale response, thes
functions are not perfectly dual of each other—just as was d
onstrated by Fig. 4. Clearly, we have two alternatives:

~i! assume velocityā̇ to be prescribed~controllable! for the
body Bd(v), the result beingȲ;

~ii ! assumeȲ to be prescribed~controllable! for the body
Bd(v), the result beingā̇.

In the first case, on account of~5.1!, for anyBd(v) we have

Ȳi~v!5
Fd~ ā̇,v!

f ~Fd~ ā̇,v!!

]

]n̄ i

Fd~ ā̇,v!. (5.3)

If for every Bd(v) we define a functionf( ā̇,v) from Fd( ā̇,v) by

fd~ ā̇,v!5E Fd

f ~Fd!
dFd (5.4)

and let the additional constant in~5.4! be fixed by setting
fd(Fd( ā̇,v)50)50, upon ensemble averaging, we obtain

^Ȳi&5K ]

] ā̇i

fd~ ā̇!L 5
]

] ā̇i

^fd~ ā̇!&. (5.5)

Turning now to the space of dissipative forces, we may proc
in an analogous fashion. That is, we may either consider a ran
JANUARY 2002, Vol. 69 Õ 31
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dissipation functionFd* (Ȳ,v) in the space of controllable force
resulting in ā̇(v), or a deterministicFd* (^Ȳ&) in the space of
averagê Ȳ& such that

ā̇i5n
]

]^Ȳ i&
Fd* ~^Ȳ&!. (5.6)

Relevant to our analysis leading to~5.6! is the latter situation. On
account of~5.2! the connection betweenā̇ and ^Ȳ& reduces to

ā̇i5
Fd* ~^Ȳ&!

g~Fd* ~^Ȳ&!!

]

]^Ȳi&
Fd* ~^Ȳ&!5m

]

]^Ȳi&
Fd* ~^Ȳ&! (5.7)

where

m5Fd* S Ȳi

]

]Ȳi

Fd* D 21

. (5.8)

If we now define a functioncd(^Ȳ&) from Fd* (^Ȳ&) by

cd~^Ȳ&!5E Fd*

g~Fd* !
dFd* (5.9)

and letcd(Fd* (^Ȳ&)50)50, we can write, instead of~5.8!,

ā̇i5
]

]^Ȳi&
cd~^Ȳ&! (5.10)

whereby

fd~ ā̇50!50 cd~^Ȳ&50!50. (5.11)

We will now consider two curves:C in velocity space and its
imageC8 in force space. CurveC connects the originO with a
point P with coordinatesā̇, while C8 connects the originO8 with
the imageP8 of P having coordinateŝȲ&. Thus, we have

E
C
^Ȳi&dā̇i1E

C8
^ ā̇i&d^Ȳi&5E

C
d~^Ȳi& ā̇i !5^Ȳi& ā̇i . (5.12)

In light of ~5.6!, ~5.11!, and~5.12!, this leads to a Legendre trans
formation corresponding to case~i!,

^fd~ ā̇!&1cd~^Ȳ&5^Ȳ&• ā̇5Fd* ~^Ȳ&!. (5.13)

An analogous analysis for case~ii ! results in a very similar
Legendre transformation~duality between the results in the velo
ity space and those in the force space!

fd~^ ā̇&!1^cd~Ȳ!&5Ȳ•^ ā̇&5Fd~^„ā̇&! (5.14)

where

Ȳi5
]

]^ ā̇i&
fd~^ ā̇&! (5.15)

and

^ ā̇i&5
]

]Ȳi

^cd~Ȳ!&. (5.16)

The functionsfd(^ ā̇&) and ^cd(Ȳ)& in the above are defined by

fd~^ ā̇&!5E Fd

f ~Fd!
dFd Fd[Fd~^ ā̇&! (5.17)

and, for everyBd(v),

cd~Ȳ,v!5E Fd*

g~Fd* !
dFd* Fd* [Fd* ~Ȳ,v!. (5.18)
32 Õ Vol. 69, JANUARY 2002
-

-

5.2 Extremum Principles. The foregoing generalization o
the formulas relating the dissipative force with the velocity v
functions Fd and Fd* leads us now to a generalization of th
extremum principles of deterministic thermomechanics~@17,18#!
to the random mediumBd5$Bd(v);vPV%. Let us discuss
these principles forFd( ā̇,v); the same results will then carr
over automatically forFd* (Ȳ,v) by the argument of duality. Two
different approaches—depending on whether velocities or for
are prescribed—were already considered, and their relation
the extremum principles for the case of apparent homogene

dissipation functions of orderr ( ā̇i]Fd(ȧ,v)/] ā̇i5rFd( ā̇,v)

and Ȳ̇i]Fd* (ȧ,v)/] Ȳ̇i5rFd(Ȳ,v)) is expounded in the
following.
Approach 1. ā̇ is prescribed andȲ(v) follows from the en-
semble of random dissipation surfacesFd( ā̇,v) according to
Ẏi(v)5l(v)]Fd( ā̇,v)/] ā̇i ; Fig. 3~a!.

Theprinciple of maximal dissipation ratefor a random medium
Bd reads: Provided the dissipative force^Ȳ& is prescribed, the
actual velocity ā̇ maximizes the dissipation rateLd

(d)5^Ȳ&• ā̇
subject to the side condition

^Fd~ ā̇!&5^Ȳ&• ā̇5Ld
~d!.0. (5.19)

Theprinciple of least dissipative forcefor a random mediumBd

reads: Provided the value^Fd( ā̇)& of the dissipation function and
the directionn of the dissipative forcê Ȳ& are prescribed, the
actual velocityā̇ minimizes the magnitude of̂Ȳ& subject to the
side condition~5.19!.
Approach 2. Ȳ is prescribed andā̇(v) follows from the en-
semble of random dissipation surfacesFd* (Ȳ,v) according to
ā̇i(v)5m(v)]Fd* (Ȳ,v)/]Ȳi ; Fig. 3~c!.

The principle of maximal dissipation ratereads now: Provided
the dissipative forceȲ is prescribed, the actual velocity^ ā̇& maxi-
mizes the mesoscale dissipation rateLd

(d)5Ȳ•^ ā̇& subject to the
side condition

Fd~^ ā̇&!5Ȳ•^ ā̇&5Ld
~d!.0. (5.20)

Theprinciple of least dissipative forcefor a random mediumBd

reads: Provided the valueFd(^ ā̇&) of the dissipation function and
the directionn of the dissipative forceȲ are prescribed, the actua
velocity ^ ā̇& minimizes the magnitude ofȲ subject to the side
condition ~5.20!.

Clearly, the heterogeneity of material microstructure is the k
cause of random constitutive behavior. The rate of dissipation
mesoscale volume ofBd varies from one specimen to anothe
unless the microstructure is perfectly deterministic~i.e., periodic!
or contains an infinite number of elements~e.g., grains!. In gen-
eral, therefore, the spatial distribution is a cooperative stocha
process, a subject considered in the next section.

6 Material With Elasticity Coupled to Damage

6.1 Basic Considerations. Let us now consider a materia
whose elasticity law—as described in Section 7.5.1 in~@4#!—is
described by

s i j 5~12D !Ci jkl «kl (6.1)

whereCi jkl is isotropic, and which must be coupled with a law
isotropic damage, that is

Ḋ5]F* /]Y (6.2)

with Y52]C/]«, C being the free energy. In particular, th
scalarD evolves with elastic dilatation strain«5« i i , which is
taken as a time-like parameter, according to

dD

d«
5H ~«/«0!s* when «5«D and d«5d«D.0

0 when «,«D and d«,0.
(6.3)
Transactions of the ASME
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Integration from the initial conditionsD5«D50 up to the total
damage,D51, gives

D5~«/«R!s* 11 «R5@~s* 11!«0
s* #s* 11

s5@12~«/«R!s* 11#E« (6.4)

wheres5s i i .
All of the above are to be understood as an effective law for

RVE, that is

Ci jkl
eff [Ci jkl `

Deff[D` Ceff[C` Feff[F` . . . (6.5)

as well as a guidance for adopting apparent responses on m
cales. Thus, assuming that the same types of formulas hold for
finite d, we have an apparent response for any specimenBd(v)

s̄~v!5~12Dd
d!Cd

d~v!•«0 (6.6)

under uniform displacement boundary condition:u(x)5«0
•x.

The notationDd
d expresses the fact that material damage is dep

dent on the mesoscaled and the type of boundary condition
applied ~i.e., d!. In fact, while we could formally write anothe
apparent response«̄(v)5(12Dd

t )21Sd
t (v)•s0, we shall not do

so because a damage process under traction boundary con
(t(x)5s0

•n) would be unstable.

6.2 Scaling of Damage ParameterD. It is now possible to
obtain scale-dependent bounds onDd

d through a procedure analo
gous to that in linear elasticity without damage~@26#!. To this end,
we partition a square-shaped windowBd(v), of volumeVd , into
four smaller square-shaped windowsBd

s8
(v), s51, . . . ,4, of

scaled85d/2 and volumeVd8 each. Next, we define two types o
uniform displacement boundary conditions, in terms of a p
scribed constant strain«0, over the windowBd(v):
unrestricted

u~x!5«0
•x ;xP]Bd (6.7)

and: restricted

ur~x!5«0
•x ;xP]Bd

s8
s51, . . . ,4 (6.8)

superscriptr in ~6.8! indicates a ‘‘restriction.’’ That is,~6.7! is
given on the external boundary of the large window, whereas~6.8!
is given on the boundaries of each of the four subwindows. Le
note, by the strain averaging theorem, that the volume ave
strain is the same in each subwindow and also equals that in
large window

«05«̄5«̄s s51, . . . ,4. (6.9)

Let s̃,«̃ be any kinematically admissible fields: They satis
everywhere the local stress-strain relations~6.1! and the displace-
ment boundary condition~6.7!, while ũ is derivable from a con-
tinuous function such that«̃ i j 5ũ( i , j ) but s̃ is not necessarily in
equilibrium. Now, there is a minimum potential energy princip
for the fieldss̃,«̃ in Bd(v):

E
]Bd

t
ū• t̃ dS2

1

2 EBd

«̄"s̃dV<E
]Bd

t
u•tdS2

1

2 EBd

«•sdV. (6.10)

For the displacement boundary condition,]Bd5]Bd
u and ]Bd

t

5B, so that

1

2 EBd

«•sdV5C~v,«!<C~v,«̃!5
1

2 EBd

«̃•s̃dV (6.11)

or

«"s<«̃"s̃. (6.12)

However, the Hill condition~3.8!, combined with the fact tha
«05«̄, allows us to write
Journal of Applied Mechanics
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«̃•s̄<«!•s! . (6.13)

Because the solutions̃r ,«̃r under the restricted condition~6.8! is
an admissible distribution under unrestricted condition~6.7! ~but
not vice versa!, from the above we have

«̄•s̄<«r
•sr . (6.14)

In view of ~6.9!, we find

s̄~v!5~12Dd
d~v!!Cd

d~v!•«0

[
1

4 (
s51

4

~12Dd
s8

d
~v!!Cd

s8
d

~v!•«0 (6.15)

so that upon substitution into~6.13! we obtain

~12Dd
d~v!!Cd

d<~12Dd8
d

~v!!Cd8
d

;d85d/2. (6.16)

We may now recall that in the virgin~no damage! state

Cd
d~v!<Cd8

d
~v![

1

4 (
s51

4

Cd
s8

d
~v!. (6.17)

Thus, we conclude that the damage parameter satisfies a s
effect relation opposite to that seen for effective moduli

Dd8
d

~v!<Dd
d~v! ;d85d/2. (6.18)

In view of the assumed WSS and ergodicity properties of
material, this results in ensemble averages

^Dd8
d &<^Dd

d& ;d85d/2. (6.19)

By applying this inequality to ever larger windows ad infinitu
we get a hierarchy of bounds on^D`

d &5Deff[D` from above

^Dd8
d &<^Dd

d&< . . . <^D`
d & ;d85d/2. (6.20)

The above inequalities are consistent with the much more p
nomenological Weibull-type modeling of brittle solids: The larg
the specimen the more likely it is to fail~e.g.,@11,38#!. We have
thus provided a derivation of the scaling law in such materials
mechanics of random media.

6.3 Stochastic Evolution ofD. Of interest is formulation of
a stochastic model of evolution ofDd in function of « to replace
~6.3!1 ; in other words, we need a stochastic processDd(v,«);
vPV,«P@0,«R#; recall that« is a time-like parameter. Assum
ing, for simplicity of discussion, just as in~@4#!, that s* 52, we
may consider this setup

dDd~v,«!5Dd~v,«!13«2@11r d~v!#dt Dd~v,0!50 (6.21)

wherer d(v) is a zero-mean random variable taking values fro
@2ad ,ad#, 1/d5ad,1. This stochastic process has the followin
properties:

~i! its sample realizations display scatterv-by-v for d,`, i.e.,
for finite body sizes;

~ii ! it becomes deterministic as the body size goes to infinity
the RVE limit ~d→`!;

~iii ! its sample realizations are weakly increasing functions
«;

~iv! its sample realizations are continuous;
~v! the scale effect inequality~6.20! is satisfied, providing we

take«R a function ofd with a property

«R~d!,«R~d8! ;d85d/2. (6.22)

Let us observe, however, that, given the presence of microst
ture, mesoscale damage should be considered as a sequen
micro/mesoscopic events, thus rendering the apparent dam
processDd(v,«);vPV,«P@0,«R# one with discontinuous path
having incrementsdDd occurring at discrete time instants, Fig
5~c!. To satisfy this requirement one should, in place of the abo
JANUARY 2002, Vol. 69 Õ 33
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take aMarkov jump processwhose range is a subset@0, 1# of real
line ~i.e., whereDd takes values!. This process would be specifie
by an evolution propagator, or, more precisely, by anext-jump
probability density functiondefined as follows:

p(«8,Dd8uDd ,«)d«8dDd8[probability that, given the process i
in stateDd at time«, its next jump will
occur between times«1«8 and «1«8
1d«8, and will carry the process to
some state betweenDd1Dd8 and Dd

1Dd81dDd8 .

Figure 5~b! shows one realizationCd(v,«);vPV;«P@0,«R#
of the apparent, mesoscale stiffness, corresponding
Dd(v,«);vPV;«P@0,«R# of Fig. 5~c!. In Fig. 5~a! we see the
resulting constitutive responsesd(v,«);vPV;«P@0,«R#.

Calibration of this model~just as the simpler one above!—that
is, a specification ofp(«8,Dd8uDd ,«)d«8dDd8—may be conducted
by either laboratory or computer experiments such as thos
~@39,40#!. As pointed out in the first of these references, in t
macroscopic picture~d→`! the zigzag character and randomne
of an effective stress-strain response vanish. However, th
studies—as well as many other works in mechanics/physic
fracture of random media~e.g.,@41#!, indicate that the homogeni
zation with d→` is generally very slow, and hence that the a
sumption of WSS and ergodic random fields may be too strong
may applications.

Extension of the model from isotropic to~much more realistic!
anisotropic damage will require vector, rather than scalar, Mar
processes. This will lead to a somewhat greater mathema
complexity which may be balanced by choosing the first mode
this subsection rather than the latter. These issues are secon

Fig. 5 Constitutive behavior of a material with elasticity
coupled with damage, where «Õ«R plays the role of a control-
lable, time-like parameter of the stochastic process. „a… Stress-
strain response of a single specimen B d„v… from B d , having a
zigzag realization, „b… deterioration of stiffness, „c… evolution of
the damage variable D. Curves shown in „a–c… indicate the
scatter in stress, stiffness and damage at finite scale d. Assum-
ing spatial ergodicity, this scatter would vanish in the limit „d
ÆL Õd\`…, whereby unique response curves of continuum
damage mechanics would be recovered.
34 Õ Vol. 69, JANUARY 2002
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The essence of this section is to outline astochastic continuum
damage mechanicsthat ~i! is based on, and consistent with, m
cromechanics of random media as well as the classical thermo
chanics formalism, and~ii ! reduces to the classical continuu
damage mechanics in the infinite volume limit.

7 Conclusions
Continuum thermomechanics of homogeneous media hinge

the concept of RVE, which is well defined in two situations on
~i! unit cell in a periodic microstructure, and~ii ! volume contain-
ing a very large~mathematically infinite! number of microscale
elements~e.g., molecules, grains, crystals!, possessing ergodic
properties. Modern materials, however, increasingly require on
work with small domains where neither of these two cases is m
As a result, response of finite volumes of material displays sta
tical scatter and is dependent on the scale and boundary condi
~typically kinematic or traction controlled!. The need for stochas
tic homogenization of material response, which has been me
scale-dependent hierarchies of bounds for elastic materials, is
tended here to dissipative/irreversible phenomena within
framework of thermomechanics with internal variables. In partic
lar, the free-energy function and the dissipation function beco
stochastic functionals whose scatter tends to decrease to ze
the material volume is increased. These functionals are linke
their duals via Legendre transforms either in the spaces
ensemble-average kinematic variables or ensemble average
variables. It is in the limit of infinite volumes~RVE limit ~ii !
above! that all the functionals become deterministic, and that
classical Legendre transforms of deterministic thermomecha
hold. The procedure is illustrated by two constitutive behaviors
thermal expansion coefficients and elastic-brittle damage—fo
wide class of materials with random microstructures.

In the case of heterogeneous media, thermomechanica
sponse laws are not unique—they depend on the scale and
choice of boundary conditions applied to the given material
main. Such response laws are called apparent~or mesoscopic!;
they become effective~or macroscopic! in the limit of infinitely
large volumes. For the elastic part of response we can prove
the apparent laws bound the effective law. For the inelastic par
response, when there is a field variational principle~plastic behav-
ior! or some link ~e.g., elastic-brittle damage! or analogy~e.g.,
thermal conductivity! to elastic behavior, we can also prove th
the apparent dissipative responses bound the effective dissip
response. When such a link is not present, the latter is on
conjecture.

To be statistically representative, the RVE needs to poss
some type of ergodicity and statistical homogeneity. A rand
field that lacks either of these properties cannot lead to a ho
geneous continuum model of a random medium. Thus, a ran
field that is stationary and nonergodic does not offer a chanc
reaching a statement in the sense of~2.8!. However, a random
field that is ergodic and nonstationary—such as encountered in
interphase zone of functionally graded materials—could
smeared out by an inhomogeneous continuum~@42#!. In any case,
the approximating mesoscale random field is nonunique~due to
three types of boundary conditions admissible by the Hill con
tion! and almost surely anisotropic pointwise.

Scale dependence discussed in this paper indicates that m
issues require further research. For example, assuming we ha
material governed on the microscale by some homogeneous
sipation function of ordernÞ2, are the apparent dissipation fun
tions on mesoscales, as well as the effective dissipation funct
on macroscale~d→`!, of the same order? Or, considering th
inclusion of higher gradients of displacement field provides a b
ter description of the spatially inhomogeneous plasticity and da
age processes~@43,44#! what is the formulation of such models fo
random media?

The proposed generalization of thermomechanics to grasp
dom nature of materials offers a basis on which to set up stoc
Transactions of the ASME
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tic finite element methods. Such an extension has been give
far in the case of elastic materials~@31#!, where a window with
apparent properties—of Dirichlet and Neumann type—played
role of a mesoscale finite element. It may now be conjectured t
in the case of inelastic materials, both dissipation function
based on ensemble-average velocities, and ensemble av
forces, respectively—will allow bounds on global response.

Finally, another example where the SVE rather than RVE—i
a statistical rather than a deterministic continuum—needs to
adopted is wavefront dynamics in random media, whether a
lyzed via TIV., RT, or ET. Thus, the wavefront~of thicknessL! is
a traveling SVE that becomes a deterministic RVE in the limit
microheterogeneity being infinitesimal relative to the thickne
(d/L→0); as a result, the evolution is stochastic and its aver
may be different from the solution of an idealized homogene
medium problem~@45#!.
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On Perturbation Solutions for
Nearly Circular Inclusion
Problems in Plane
Thermoelasticity
An approximate analytical solution to the nearly circular inclusion problems of arbitr
shape in plane thermoelasticity is provided. The shape of the inclusion boundary co
ered in the present study is assumed to have the form r5a0@11A~u!#, where a0 is the
radius of the unperturbed circle and A~u! is the radius perturbation magnitude that i
represented by a Fourier series expansion. The proposed method in this study is ba
the complex variable theory, analytical continuation theorem, and the boundary pe
bation technique. Originating from the principle of superposition, the solution of
present problem is composed of the reference and the perturbation terms that the
ence term is the known exact solution pertaining to the case with circular inclus
First-order perturbation solutions of both temperature and stress fields are obtained
plicitly for elastic inclusions of arbitrary shape. To demonstrate the derived gen
solutions, two typical examples including elliptical and smooth polygonal inclusions
discussed in detail. Compared to other existing approaches for elastic inclusion prob
our methodology presented here is remarked by its efficiency and applicability to i
sions of arbitrary shape in a plane under thermal load.@DOI: 10.1115/1.1410367#
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1 Introduction
In many engineering applications, determination of therm

stresses is taking a more and more important role in analyzing
service life of advanced composite materials exposed to high t
perature environments. In the cases that there is an inhomoge
existing in an infinite matrix subjected to a remote heat flux,
insertion would induce nonuniform temperature disturbance
can create nearby stress concentration and result in material
radation. The example of such problems was studied earlie
Florence and Goodier@1,2# who solved the stress field for insu
lated ovaloid holes or spherical cavities embedded in an infi
matrix. Since then a number of the hole or inclusion proble
have been studied, such as Chen@3# for orthotropic materials with
an elliptic hole based on the complex variable technique de
oped by Green and Zerna@4#, Hwu @5#, for an anisotropic medium
with an elliptic hole based on Stroh formalism~Stroh,@6#!, Kattis
and Meguid @7#, for isotropic media with an elastic inclusio
based on the complex variable representations, and Chao
Shen@8#, for an elliptic inclusion problem in a generally aniso
tropic body based on the method of Lekhnitskii formulation a
the technique of conformal mapping. Among the aforementio
studies, the shape geometry of elastic inclusion problems ca
successfully treated up to an ellipse by using the conformal m
ping technique with additional restriction in the inclusion doma
to remedy the discontinuity to obtain one-to-one transformat
~Hwu and Yen,@9#!. It is known that the technique of conforma
mapping is one of the most powerful methods for the solution
boundary value problems for awkwardly shaped regions. Ho
ever, due to the lack of a conformal mapping, which maps sim

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octob
2, 2000; final revision, June 5, 2001. Associate Editor: J. R. Barber. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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taneously the exterior and interior of the inclusion onto the o
with simpler shape, this technique is unable to directly apply e
tic inclusions of any shape~see, e.g., Jaswon and Bhargava@10#,
Sendeckyj@11#, and Ru@12#!. The idea of neutrality in the contex
of inhomogeneities of various shapes imbedded in a tw
dimensional elastic body is another important topic~see, e.g., Ru
@13#, and Benveniste and Miloh,@14#!. For a nonideal interface
between the matrix and the inhomogeneity, Ru@13# showed that if
the interface parameter which relates the discontinuity of the
placement to the tractions at the interface is properly chosen,
a two-dimensional stress field in the original body will rema
undisturbed after the introduction of the inhomogeneity. The
istence of neutral inhomogeneities of various shapes in a con
tion problem was studied by Benveniste and Miloh@14# who de-
rived the conditions to be satisfied by the field variables a
nonideal interface with a variable interface parameter. To the b
of our knowledge, no analytical exact solution is available
inclusions of any shape except the one with a family of ellips
Hence, from a practical viewpoint, an approximate general me
odology that gives an analytical solution for elastic inclusions
any shape is of great interest. The present study is then trigg
by such a desire.

The magnification of stresses around the inhomogeneity
bedded in an infinite matrix under a remote uniform heat flux is
great importance in engineering design. The problem beco
more and more attractive and applicable when the inclusion i
noncircular shape since the local stress could be significantly
fected by the shape of inclusions. In the present work, the bou
ary value problem of an inclusion of arbitrary shape in pla
thermoelasticity is considered. The boundary of the inclusion
be arbitrary, that is characterized by a Fourier series expansion
mentioned in the last paragraph, the technique of conformal m
ping is unable to solve the inclusion problem with nonelliptica
shaped regions. An approximate methodology based on the
turbation technique~Gao @15#! by introducing a small real quan
tity that denotes the deviation of the inclusion from that of a cir
is adopted in this study. Based on the principle of superposit
the solution of the present problem is composed of the refere
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on

tment
nd

he
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and the perturbation terms that the reference term is the analy
exact solution corresponding to the problem associated wit
circular inclusion. First-order solutions are derived in an expl
form for nearly circular inclusions of arbitrary shape that a
viewed as being perturbed from a reference circular inclus
Two typical examples associated with elliptical and smooth
lygonal inclusions are solved explicitly and discussed in detail
order to verify the validness and efficiency of the present me
odology, the solutions associated with the hole problems, wh
are reduced from the present results, are compared with the e
ing exact solutions~Kattis @16#!.

2 Plane Thermoelasticity for Circular Inclusion Prob-
lem

Consider a circular inclusion of radiusa0 existing in and being
perfectly bonded to an infinite matrix~Fig. 1!. We denote the
regions occupied by the inclusion and the matrix asS1 and S2 ,
respectively, throughout this paper; the quantities for the regi
of their own are denoted by the corresponding subscripts. In
regular procedure on solving the thermoelasticity problem,
temperature function must be determined first and then for
stress functions. For the two-dimensional heat conduction p
lem, the resultant heat flowQj and the temperatureTj are related
to the temperature functionsgj8(z) as

Qj52kj Im@gj8~z!#, (1)

Tj5Re@gj8~z!#, (2)

where the notations Re and Im stand for the real part and im
nary part of a complex value function, respectively, andkj for the
heat conductivity. Regarding the formulations for thermal stres
the two components of the displacements and traction force in
Cartesian coordinates can be expressed in the following equa
~@17#!:

2m j~uj1 iv j !5k jf j~z!2zf j8~z!2c j~z!12m jb j

3E gj8~z!dz, (3)

2Yj1 iX j5f j~z!1zf j8~z!1c j~z!, (4)

where m j is the shear modulus, andk j5(32n j )/(11n j ), b j
5a j for the plane stress andk j5(324n j ), b j5(11n j )a j for
the plane strain withn j being the Poisson’s ratios anda j being the

Fig. 1 Circular inclusion in an infinite plane under remote heat
flow
Journal of Applied Mechanics
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linear thermal expansion coefficients. In the following derivatio
the stress-state notations are adopted in the Cartesian coordi
as

Q j5~txx1tyy! j52@f j8~z!1f j8~z!#, (5)

S j5~tyy2txx12i txy! j52@ z̄f j9~z!1c j8~z!#, (6)

where theQ j and S j are known, respectively, as the hydrosta
and deviatoric of a stress state.

Assume that there is no heat source~or singularity! being situ-
ated in the inclusion, the temperature functions in the circu
inclusion and in the matrix, respectively, can be written as

g0~1!8 ~z!5g̃~1!8 ~z!, for uzu<a0 , (7)

g0~2!8 ~z!5g008 ~z!1g̃~2!8 ~z!, for uzu>a0 , (8)

whereg008 (z) is the temperature function for a homogeneous in
nite solid andg̃( j )8 (z) are the perturbed functions caused by fie
perturbation due to the existence of the inclusion. From Eqs.~1!
and ~2! with the thermal interface continuity conditions,Q15Q2

and T15T2 , along z5z5a0eiu, the temperature functions ar
found as~@18#!

g0~1!8 ~z!5
2k2

k21k1
g008 ~z!, for uzu<a0 , (9)

and

g0~2!8 ~z!5g008 ~z!1
k22k1

k21k1
ḡ008 S a0

2

z D , for uzu>a0 . (10)

For solving the stress field of elastic inclusion problems,
determination of the forms of the stress functions must be pr
erly chosen such that both the displacements and resultant f
are single-valued for any enclosed loop either in the matrix o
the inclusion field. For this consideration, the two stress functio
f0( j ) andc0( j ) , are now expressed as

f0~ j !~z!5 f f~ j !~z!1f0~ j !* ~z!, (11)

c0~ j !~z!5 f c~ j !~z!1c0~ j !* ~z!, (12)

where the functionsf f( j ) and f c( j ) must satisfy the following
equations~@18#!:

@k j f f~ j !2zf f~ j !8 2 f c~ j !#cj
522m jb j R

cj

gj8~ t !dt, (13)

and

@ f f~ j !1zf f~ j !8 1 f c~ j !#cj
50, (14)

with the notation@ #cj
being the increment of a function in th

bracket when enclosing any contourcj in Sj . The partsf0( j )* and
c0( j )* are two holomorphic functions in their corresponding fie
Sj that can be expressed in series form as

f0~1!
* ~z!5 (

m50

`

Nmzm; c0~1!
* ~z!5 (

m50

`

Pmzm; (15)

f0~2!
* ~z!5 (

m50

`

Lmz2m; c0~2!
* ~z!5 (

m50

`

Mmz2m (16)

where the coefficients in the above equations can be determ
from the interface continuity conditions.

3 Plane Thermoelasticity for Nearly Circular Inclu-
sion Problems

3.1 Temperature Field Induced by a Nearly Circular In-
clusion. Consider a nearly circular inclusion existing in an in
nite solid that the boundary of the inclusion is slightly differe
JANUARY 2002, Vol. 69 Õ 37
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from a reference circle of radiusa0 and the points along the in
terface between the matrix and inclusion can be expressed a

z5r ~u!eiu5@11A~u!#a0eiu, (17)

where the small real quantityA(u) is obviously the perturbation
magnitude at the given positionu ~Fig. 2!. Denote the pointz on
the circumferenceuzu5a0 and z̃ for the point on the actual inter
face, Eq.~17! can be equivalently rewritten as

z̃5@11A~z!#z, z5a0eiu, (18)

wherez and z̃ are of the same polar coordinate argumentu. The
temperature functionsgj8(z) for the nearly circular inclusion prob
lems can be expressed in the perturbation form as follows:

gj8~z!5g0~ j !8 ~z!1g«~ j !8 ~z!, j 51,2 for zPSj , (19)

whereg0( j )8 (z) are the temperature functions of the circular inc
sion problem, say the reference temperature functions,
g«( j )8 (z) are the perturbation terms due to the reference circum
ence atuzu5a0 being perturbed byA(z) as Eq.~17! indicated.
Based on a first-order approximation, Eq.~19! at the interface can
then be expressed as

gj8~ z̃ !5g0~ j !8 ~ z̃ !1g«~ j !8 ~ z̃ !

>g0~ j !8 ~z!1A~z!zg0~ j !9 ~z!1g«~ j !8 ~z!, j 51,2. (20)

Since the resultant heat flux and the temperature are assum
be continuous across the interface and according to the exp
sions in Eq.~1! and~2!, the thermal continuity conditions lead t

@kg8~ z̃ !2kg8~ z̃ !#1
250, (21)

and

@g8~ z̃ !1g8~ z̃ !#1
250, (22)

where the symbol@ f #1
2 denotes for the function quantity jum

across the interface from the inclusion boundary to the ma
boundary, i.e.,f 22 f 1 . Similarly, the thermal continuity condi
tions for the reference temperature function can also be expre
as

@kg08~z!2kg08~z!#1
250, (23)

and

Fig. 2 Inclusion of arbitrary shape in an infinite plane under
remote heat flow
38 Õ Vol. 69, JANUARY 2002
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@g08~z!1g08~z!#1
250. (24)

Substituting Eq.~20! into Eq.~21! and~22! and using Eq.~23! and
~24!, we obtain a set of equations as

k1A~z!zg0~1!9 ~z!2k2A~z!zg0~2!9 ~z!1k1g«~1!8 ~z!2k2g«~2!8 ~z!

2k1A~z!zg0~1!9 ~z!1k2A~z!zg0~2!9 ~z!2k1g«~1!8 ~z!

1k2g«~2!8 ~z!50, (25)

and

A~z!zg0~1!9 ~z!2A~z!zg0~2!9 ~z!1g«~1!8 ~z!2g«~2!8 ~z!

1A~z!zg0~1!9 ~z!2A~z!zg0~2!9 ~z!1g«~1!8 ~z!2g«~2!8 ~z!50.

(26)

Once the reference temperature functionsg0( j )8 (z) are obtained,
the perturbation terms of the temperature functionsge( j )8 (z) can be
determined from~25! and~26! by some basic methods of solution
such as analytical continuation, Cauchy integral, and series ex
sion, etc. In the present study, the method of analytical contin
tion is used which is much more powerful and allows bound
value problems to be solved with comparative ease.

3.2 Stress Field Induced by a Nearly Circular Inclusion
The two stress functions for the nearly circular inclusion probl
can be expressed as

f j~z!5f0~ j !~z!1f«~ j !~z!, (27)

c j~z!5c0~ j !1c«~ j !~z!, (28)

wheref0( j )(z) andc0( j )(z) are the stress functions for the refe
ence circular inclusion problem whilef«( j )(z) and c«( j )(z) are
the perturbation terms due to the reference circle atuzu5a0 being
perturbed byA(z). These stress functions at the interface can
approximately expressed as

f j~ z̃ !>f0~ j !~z !1A~z!zf0~ j !8 ~z!1f«~ j !~z !, (29)

c j~ z̃ !>c0~ j !~z !1A~z!zc0~ j !8 ~z!1c«~ j !~z !. (30)

Since both the traction and the displacements at the actual in
face must be continuous and according to the expressions in~3!
and ~4!, the interface continuity conditions lead to

@f~ z̃ !1 z̃f8~ z̃ !1c~z̃ !#1
250, (31)

and

F2kf~z̃ !1 z̃f8~ z̃ !1c~z̃ !

m
22bg~ z̃ !G

1

2

50. (32)

For the reference circular inclusion problem, the interface co
nuity conditions can also be expressed as

@f0~z!1zf08~z!1c0~z!#1
250, (33)

and

F2kf0~z!1zf08~z!1c0~z!

m
22bg0~z!G

1

2

50. (34)

Differentiating ~34! with respect toz while noting thatz̄5a0
2/z

yields

F2kf08~z!1f08~z!

m
G

1

2

5
a0

2

z2 F zf09~z!1c08~z!

m
G

1

2

1@2bg08~z!#1
2

5
z̄

2z
FS0~z!

m
G

1

2

1@2bg08~z!#1
2 (35)
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S0~z!5~tyy2txx12i txy!052@ z̄f09~z!1c08~z!#. (36)

By substituting Eqs.~29! and~30! into ~31! and~32! and making
use of Eqs.~33!, ~34!, and~35!, we obtain a system of equation
as

f«~1!~z !2f«~2!~z !1zf«~1!8 ~z!2zf«~2!8 ~z!1c«~1!~z !2c«~2!~z !

52 z̄A~z!@S0~1!~z !2S0~2!~z !#, (37)

and

2k1f«~1!~z !1zf«~1!8 ~z!1c«~1!~z !

m1

1
k2f«~2!~z !2zf«~2!8 ~z!2c«~2!~z !

m2

52 z̄A~z!FS0~1!~z !

m1
2

S0~2!~z !

m2
G

12b1g«~1!~z !22b2g«~2!~z !. (38)

The stress perturbation functionsf«( j )(z) and c«( j )(z) can be
immediately determined from~37! and ~38! once the reference
stress functions and the temperature perturbation functions
obtained. Before doing this, the function forms of the stress p
turbation functions must be defined first that will make the de
vation more obvious and easier. The typical solving proced
will be illustrated in the following section.

4 Elastic Inclusion of Arbitrary Shape Under Remote
Uniform Heat Flux

4.1 Temperature Field. Consider an elastic inclusion of ar
bitrary shape embedded in an infinite matrix under remote u
form heat flux~Fig. 2!. The boundary of the inclusion considere
in this work is represented by a Fourier series expansion such
the radius perturbation magnitudeA(z) in ~18! along the inclusion
boundary can be expressed as

A~z!5 (
m52`

`

CmS z

a0
D m

. (39)

The temperature function for an infinite solid under a uniform h
flux is given by

g008 ~z!5te2 ilz, (40)

wheret is the temperature gradient andl the angle of the hea
flux with respect to the positive real axis. By substituting Eq.~40!
into ~9! and~10!, the reference temperature functions are found

g0~1!8 ~z!5vz, for zPS1 , (41)

g0~2!8 ~z!5az1ba0
2

1

z
, for zPS2 (42)

where

a5te2 il; b5
k22k1

k11k2
teil; v5

2k2

k11k2
te2 il. (43)

Applying ~39!, ~41!, and~42! at the interface gives

A~z!zg0~1!9 ~z!5 (
m52`

`

va0
12mCm21zm, (44)

A~z!zg0~2!9 ~z!5 (
m52`

`

~aCm212bCm11!a0
12mzm. (45)
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By substituting the above Eqs.~44! and ~45! into Eqs.~25! and
~26! and putting all the terms of positive or zero order ofz on the
one side and the terms of negative order ofz on the other side, one
can obtain a system of equations through the use of analy
continuation method as

(
m50

`

@~k1v2k2a!Cm211k2bCm111~k2ā2k1v̄ !C2m21

2k2b̄C12m#a0
12mzm1k1g«~1!8 ~z!1k2g«~2!8 ~z!50, (46)

(
m50

`

@~v2a!Cm211bCm112~ ā2v̄ !C2m211b̄C12m#a0
12mzm

1g«~1!8 ~z!2g«~2!8 ~z!50. (47)

Solving ~46! and ~47! for the temperature perturbation function
g«( j )8 (z) yields

g«~1!8 5 (
m50

` F 22k2

k11k2
b~C11m1C212m!Ga0

12mzm, zPS1

(48)

g«~2!8 ~z!5 (
m51

` F2
k22k1

k21k1
b̄~C212m1C11m!1b~C12m

1C211m!Ga0
11mz2m, zPS2 . (49)

Integration of~48! and ~49! with respect toz gives

g«~1!~z!5 (
m51

` F 22k2

m~k11k2!
b~Cm1C2m!Ga0

22mzm, zPS1 ,

(50)

g«~2!~z!5g« log z1 (
m51

` F k22k1

m~k21k1!
b̄~C222m1C21m!

1b~C2m1Cm!Ga0
21mz2m, zPS2 (51)

where

g«5F2
k22k1

k21k1
b̄~C221C2!1b~C01C0!Ga0

2. (52)

4.2 Thermal Stress Field. According to the obtained refer
ence temperature functions given in Eqs.~41! and~42!, the refer-
ence stress functions are assumed to be

f0~ j !~z!5B0~ j ! ln z1f0~ j !* ~z!, (53)

c0~ j !~z!5C0~ j ! ln z1c0~ j !* ~z! (54)

where the four constantsB0( j ) andC0( j ) can be found according to
Eqs. ~13! and ~14! and the coefficients of the four holomorph
functionsf0( j )* andc0( j )* (z) can be determined from the interfac
continuity conditions. The final results of the reference str
functions are obtained as@16#

f0~1!~z!52
m1m2

m2k11m1
~b1v2b2a!z2, (55)

c0~1!~z!50, (56)

f0~2!~z!52
2m2b2

11k2
ba0

2 ln z, (57)
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c0~2!~z!52
2m2b2

11k2
b̄a0

2 ln z2F m1

m2k11m1
~b1v̄2b2ā !

2
2b2b

11k2
Gm2a0

4z22. (58)

Similar to the expressions of the reference stress functions a
dicated in Eqs.~53! and~54!, the stress perturbation functions ca
also be assumed as

f«~ j !~z!5B«~ j ! ln z1f«~ j !* ~z!, (59)

c«~ j !~z!5C«~ j ! ln z1c«~ j !* ~z!, (60)

where the holomorphic functionsf«( j )* andc«( j )* are expressed in
Laurent’s series form as

f«~1!
* ~z!5 (

m50

`

N«~m!z
m; c«~1!

* ~z!5 (
m50

`

P«~m!z
m; (61)

f«~2!
* ~z!5 (

m50

`

L«~m!z
2m; c«~2!

* ~z!5 (
m50

`

M «~m!z
2m. (62)

Making use of Eqs.~50!, ~51!, ~59!, and ~60!, the constants ap
pearing in the logarithmic terms in Eqs.~59! and~60! are obtained
according to Eqs.~13! and ~14! as

B«~1!50, (63)

B«~2!52
2m2b2

k211
g« (64)

C«~1!50, (65)

C«~2!5
2m2b2

k211
g«. (66)

With the help of Eqs.~36!, ~39! and ~55!–~58!, the terms
z̄A(z)S0( j )(z) in Eqs. ~37! and ~38! can be expanded in serie
form as

z̄A~z!S0~1!~z !5 (
m52`

`

2A1a0
22mCmzm, (67)

z̄A~z!S0~2!~z !5 (
m52`

`

2@~A22A3!Cm221A3Cm#a0
22mzm,

(68)

in which

A152
2m1

m2k11m1
S 2k2b1

k11k2
2b2Dm2teil; (69)

A25F 2m1

m2k11m1
S 2k2b1

k11k2
2b2D2

4b2

11k2
S k22k1

k21k1
D Gm2te2 il;

(70)

A352
2b2

11k2

~k22k1!

~k21k1!
m2teil. (71)

Similar to the previous approach, substitution of~50!, ~51!, ~59!,
~60!, ~67!, and~68! into ~37! and~38! gives the following two sets
of equations as

(
m51

`

@N«~m!2M «~m!a0
22m22~A22A3!a0

22mCm22

22~A32A1!a0
22mCm#zm1 (

m53

`

~m22!L«~m22!

3a0
22m12zm1N«~1!z2B«~2!a0

22z250 (72)
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(
m51

` F2
k1

m1
N«~m!2

1

m2
M «~m!a0

22m2
2

m2
~A22A3!a0

22mCm22

22S 1

m2
A32

1

m1
A1Da0

22mCmGzm

1 (
m53

`
~m22!

m2
L«~m22!a0

22m12zm1 (
m51

`
4b1k2b

m~k11k2!
~Cm

1C2m!a0
22mzm1

N«~1!

m1
z2

B«~2!

m2
a0

22z250 (73)

and

(
m51

`

@L«~m!2~m12!N«~m12!a0
212m2P«~m!a0

2m#z2m

1 (
m51

`

@2~A22A3!C222m12~A32A1!C2m#

a0
21mz2m50 (74)

(
m51

` F2
k2

m2
L«~m!2

~m12!

m1
N«~m12!a0

212m2
1

m1
P«~m!a0

2mGz2m

2 (
m51

`
2b2

m F ~k22k1!

~k21k1!
b̄~C222m1C21m!

1b~C2m1Cm!Ga0
21mz2m1 (

m51

` F 2

m2
~A22A3!C222m

12S A3

m2
2

A1

m1
DC2mGa0

21mz2m50. (75)

Solving the above four equations for the unknownsN«(m) , P«(m) ,
L«(m) , andM «(m) yields

N«~1!5
1

~m12m2!1m2k1
F2~m22m1!A1a0C1

1
4b1m1m2k2ba0

~k11k2!
~C11C21!G , (76)

N«~m!5
2~m22m1!

m11m2k1
A1a0

22mCm

1
4b1m1m2k2

~m11m2k1!~k11k2!

b

m
a0

22m~Cm1C2m!, m>2

(77)

L«~m!5
2~m22m1!

m21m1k2
@C222m2A3C2m#a0

21m

2
2b2m1m2

m~m21m1k2! F ~k22k1!

~k21k1!
b̄~C222m1C21m!

1b~C2m1Cm!Ga0
21m , m>1 (78)

P«~m!5L«~m!a0
22m1~m12!N«~m12!a0

2

12@~A22A3!C222m1~A32A1!C2m#a0
22m , m>1

(79)

M «~1!5~N«~1!1N«~1!!a0
212@~A12A3!C12~A22A3!C21#a0

3

(80)
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M «~2!5N«~2!a0
42B«~2!a0

212@~A12A3!C22~A22A3!C0#a0
4

(81)

M «~m!5N«~m!a0
2m1~m22!L«~m22!a0

212@~A12A3!Cm

2~A22A3!Cm22#a0
21m , m>3. (82)

The expressions~59!–~66! and ~76!–~82! provide the first-order
analytical solution for the inclusion problem of arbitrary shape
an entire plane under a remote uniform heat flux.

5 Examples

5.1 Elliptical Inclusion Problem. We first consider the el-
liptical inclusion problem of which the radius perturbation ma
nitudeA(z) can be expressed as

A~z!5
«

2 S z2

a0
2 1

a0
2

z2D (83)

where« is a relatively small quantity as compared to unity. T
inclusion boundary represented by~83! is an ellipse with semi-
axes beinga0(11«) and a0(12«). Comparing Eq.~83! to Eq.
~39!, the coefficientsCm are then given by

Cm5 H «/2, m522,2,
0, mÞ22,2. (84)

Applying ~84! into ~48! and ~49!, we can have the temperatur
functions as

g«~1!8 ~z!52
2«k2b

k11k2
z, zPS1 , (85)

and

g«~2!8 ~z!52«Fk22k1

k21k1
b̄a0

2z212ba0
4z23G , zPS2 . (86)

After having the constantsB«(2) , N«(m) , L«(m) , P«(m) , and
M «(m) from the general expressions of Eqs.~64!, ~76!–~82!, the
four stress functionsf j (z) andc j (z) can be determined as

f1~z!5F2
m1m2

m2k11m1
~b1v2b2a!1N«~2!Gz2, (87)

c1~z!5P«~2!z
2, (88)

for zPS1 , and

f2~z!5F2
2m2b2

~11k2!
ba0

21B«~2!G ln z1L«~2!z
22, (89)

c2~z!5F22m2b2

~11k1!
b̄a0

21B̄«~2!G ln z2F m1m2

m2k11m1
~b1v̄2b2a!a0

4

1
2m2b2

11k2
ba0

41M «~2!Gz221M «~4!z
24, (90)

for zPS2 , where

N«~2!5«F ~m22m1!A112m1m2b1bk2~k11k2!21

m2k11m1
G , (91)

L«~2!52«F ~m22m1!A31m1m2b2b

m1k21m2
Ga0

4, (92)

P«~2!5L«~2!a0
241«~A32A1!, (93)

M «~2!5N«~2!2B«~2!a0
221«~A12A3!a0

4, (94)

M «~4!52L«~2!a0
22«~A22A3!a0

6, (95)

B«~2!5«
2m2b2

k211 S k22k1

k21k1
D b̄a0

2. (96)
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It is seen that from~87! and~88! the stresses inside the ellipti
inclusion are always linear functions of the coordinatez which is
different from the result of uniform stresses existing in the inc
sion of the corresponding isothermal elastic problem. The inte
cial stresses along the inclusion boundary can be performed
using field solutions of the matrix (j 52) or inclusion (j 51) as

tjj~ j !5ReH f j8~ z̃ !1f j8~ z̃ !2@ z̃f j9~ z̃ !1c j8~ z̃ !#S dx̃2

ds
1 i

dx̃1

ds D 2J ,

(97)

thh~ j !5ReH f j8~ z̃ !1f j8~ z̃ !1@ z̃f j9~ z̃ !1c j8~ z̃ !#S dx̃2

ds
1 i

dx̃1

ds D 2J ,

(98)

thj~ j !5ImH f j8~ z̃ !1f j8~ z̃ !2@ z̃f j9~ z̃ !1c j8~ z̃ !#S dx̃2

ds
1 i

dx̃1

ds D 2J ,

(99)

where

dx̃1

ds
5

1

uJu
dx̃1

du
5

1

uJu ~2sinu2« cos 2u sinu22« sin 2u cosu!,

(100)

dx̃2

ds
5

1

uJu
dx̃2

du
5

1

uJu ~cosu1« cos 2u cosu22« sin 2u sinu!,

(101)

with

J5A@r 8~u!#21r 25A~22« sin 2u!21~11« cos 2u!2.
(102)

When the inclusion is assumed to be an insulated and tract
free hole, the hoop stress along the hole boundary can be obta
from ~98! by letting k150 andm150 as

thh5Re$24da0
2z211«~2dz14d̄a0

2z2126da0
4z23!%,

z5a0eiu, (103)

where

Fig. 3 Dimensionless hoop stress for the elliptical hole prob-
lem with lÄ90 deg
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Fig. 4 Dimensionless hoop stress for the quadrilateral hole problem with l
Ä90 deg

Fig. 5 Dimensionless hoop stress for the hexagonal hole problem with l
Ä90 deg
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d5
2m2b2

11k2
teil. (104)

Comparison of the dimensionless hoop stress between the pr
result ~103! and that derived by Kattis@16# displayed in Fig. 3
shows that a good accuracy of the present first-order perturba
solution is achieved.

5.2 Smooth Polygonal Inclusion Problems. Next, we con-
sider polygonal inclusion problems of which the radius pertur
tion magnitudeA(z) can be given by

A~z!5
«

2 S zn

a0
n 1

a0
n

znD , n>3, (105)

where

«5
1

11n2 . (106)

These inclusions are of practical interest since they provide g
approximations to regular polygonal inclusions. For example,
inclusion shape withn53 resembles a triangle,n54 for quad-
rangle,n55 for pentagon, and so forth. Although the polygon
elastic inclusion problems have been studied by some aut
~see, e.g., Ru@12# and Gao@15#!, the corresponding thermoplas
ticity problems are not available in the literature. According to E
~105!, the coefficientsCm appearing in~39! are given by

Cm5 H «/2, m52n,n,
0, mÞ2n,n. (107)

Applying ~107! to the general expressions derived in Section
the temperature and stress functions for inclusion and ma
fields, respectively, can be immediately determined as follows
r
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g18~z!5vz2«
2k2b

k11k2
a0

22nzn21, (108)

f1~z!52
m1m2

m2k11m1
~b1v2b2a!z21N«~n!z

n, (109)

c1~z!5P«~n22!z
n221P«~n!z

n, (110)

for zPS1 , and

g28~z!5az1ba0
2z212«S k12k2

k11k2
b̄a0

nz12n2ba0
n12z2n21D ,

(111)

f2~z!52
2m2b2

11k2
ba0

2 ln z1L«~n22!z
2~n22!1L«~n!z

2n,

(112)

c2~z!52
2m2b2

11k2
b̄a0

2 ln z2F m1m2

m2k11m1
~b1v̄2b2ā !

2
2m2b2

11k2
bGa0

4z221M «~n!z
2n1M «~n12!z

2~n12!,

(113)

for zPS2 , where

N«~n!5«
~m22m1!A114k2m1m2b1b~k11k2!21n21

m11m2k1
a0

22n ,

(114)

L«~n!52«
~m22m1!A312n21m1m2bb2

k2m11m2
a0

21n , (115)
L«~n22!5«
~m22m1!~A22A3!22~22n!21m1m2b2b̄~k12k2!~k11k2!21

k2m11m2
a0

n , (116)
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M «~n!5N«~n!a0
2n1~n22!L«~n22!a0

21«~A12A3!a0
21n ,

(117)

M «~n12!5nL«~n!a0
22«~A22A3!a0

n14, (118)

P«~n!5L«~n!a0
22n1«~A32A1!]a0

22n , (119)

P«~n22!5L«~n22!a0
22n141nN«~n!a0

21«~A22A3!a0
42n .

(120)

Similar to the previous approach for the elliptical inclusio
problem, the interfacial stresses can also be expressed from~97!–
~99! by replacing~100!–~102! with

dx̃1

ds
5

1

uJu
dx̃1

du
5

1

uJu ~2sinu2« cosnu sinu2n« sinnu cosu!,

(121)

dx̃2

ds
5

1

uJu
dx̃2

du
5

1

uJu ~cosu1« cosnu cosu2n« sinnu sinu!,

(122)

J5A@r 8~u!#21r 25A~2«n sinnu!21~11« cosnu!2.
(123)

For the special case of an insulated and traction-free hole p
lem, the hoop stress along the polygonal hole boundary can
obtained from~98! by letting k150 andm150 as
n

ob-
be

thh5Re$24da0
2z211«@2da0

22nzn211~824n!d̄a0
nz12n

1~224n!da0
n12z212n#%. (124)

Comparisons of the dimensionless hoop stress between the pr
results~124! and the exact solutions derived by Kattis@16# for the
case of a quadrilateral hole,n54, and a hexagonal hole,n56, are
shown in Figs. 4 and 5, respectively. The agreement between t
two results shows that our proposed methodology is satisfact

6 Conclusion
The general perturbation solutions for the two-dimensio

thermoelastic problem with a nearly circular elastic inclusion
arbitrary shape existing in an infinite matrix are provided. T
boundary of the inclusion is characterized by a Fourier series
pansion that allows us to obtain an analytical solution for bou
ary value problems of an inclusion of arbitrary shape. Based
the method of analytical continuation and the boundary pertur
tion technique, first-order perturbation solutions are given exp
itly for an inclusion of arbitrary shape. It is should be noted th
higher-order perturbation solutions can also found by the pre
approach without difficulty. Besides, the corresponding inclus
problem under a point heat source with the strengthq located at
the pointz5z0 in the matrix can also be treated if one replaces
homogeneous solution in Eq.~40! with 2q/2pk2 ln(z2z0). As an
application, two typical examples associated with elliptical a
smooth polygonal elastic inclusions are solved completely
discussed in detail. Due to the intrinsic deficiency of the techniq
JANUARY 2002, Vol. 69 Õ 43
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of conformal mapping, the present method has its advantag
both efficiency and applicability to inclusions of arbitrary shap
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On Fractal Cracks in Micropolar
Elastic Solids
In this paper we review the fracture mechanics of smooth cracks in micropolar (Coss
elastic solids. Griffith’s fracture theory is generalized for cracks in micropolar solids a
shown to have two possible forms. The effect of fractality of fracture surfaces on
powers of stress and couple-stress singularity is studied. We obtain the orders of
and couple-stress singularities at the tip of a fractal crack in a micropolar solid us
dimensional analysis and an asymptotic method that we call ‘‘method of crack-e
zone.’’ It is shown that orders of stress and couple-stress singularities are equal to
order of stress singularity at the tip of the same fractal crack in a classical solid.
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1 Introduction
Fractal geometry, which has been argued to be a better ge

etry for modeling natural objects than Euclidean geometry, w
introduced by Mandelbrot@1,2#. The term ‘‘fractal’’ was coined by
Mandelbrot@2# from the Latin verbfrangere, ‘‘to break,’’ and the
corresponding adjectivefractus, ‘‘fragmented and irregular.’’
Fractal geometry has found applications in many fields of scie
and engineering in recent years. So far fractal geometry’s m
applications to solid mechanics problems are in contact mecha
and fracture mechanics. Fractal fracture mechanics is a noncl
cal fracture mechanics in which cracks are assumed to be fra
curves~surfaces! ~Cherepanov et al.@3#, Balankin@4#!. In classi-
cal fracture mechanics it is assumed that cracks are rectifi
curves~surfaces!, i.e., curves~surfaces! with finite lengths~areas!.
Cracks are modeled by smooth curves~surfaces! with probably a
finite number of kinks. These simplifying assumptions make fr
ture mechanics problems mathematically tractable.

Mandelbort et al.@5# experimentally showed that fracture su
faces of steel are fractals. Since that pioneering work many o
experimental studies have been done~for example, Brown and
Scholz@6#; Power and Tullis@7#; Saouma et al.@8#; Saouma and
Barton @9#; Wong et al.@10#!. Now we know that cracks can b
modeled by fractals in a wide~but finite! range of length scales. A
number of theoretical studies have been conducted to date.
solov @11# and Gol’dshte�n and Mosolov@12,13# studied the sin-
gularity of stresses at the tip of a mode I self-similar fractal cra
showing that the power of stress singularity is a linear function
fractal dimension of the crack. Yavari et al.@14# calculated the
orders of stress singularity for mode I, II, and III fractal crack
Yavari @15#, Yavari et al. @16#, and Balankin@4# studied HRR
singularity for self-similar and self-affine fractal cracks.

Mosolov @17# and Balankin@4# investigated the path indepen
dence ofJ-integral for fractal cracks and modified theJ-integral
for fractal cracks. They argued that the modifiedJ-integrals are
path-independent. This problem was later discussed in Ya
et al. @16#. They mentioned that a fractalJ-integral should be
equal to the potential energy release per unit of a fractal meas
They explained that the modifiedJ-integrals defined by Mosolov
and by Balankin are only locally path-independent and have
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physical meaning. Crack growth in compression was explained
Mosolov and Borodich@18#, Mosolov @19#, and Balankin@4#.

Yavari @15# and Yavari et al.@14# introduced a new mode o
fracture in fractal fracture mechanics and called it ‘‘the four
mode’’ or ‘‘the axial mode.’’ They pointed out that the existence
this new mode of fracture could make some single-mode pr
lems of classical fracture mechanics, mixed-mode problems
fractal fracture mechanics. Later, Yavari et al.@16# showed that
there are actually three new fractal modes. Xie@20# studied crack
branching using a fractal model. Xie and Sanderson@21# ex-
plained a paradox in dynamic fracture mechanics using their f
tal model. Borodich@22,23# realized that Griffith’s criterion must
be modified for fractal cracks. He showed that in the modifi
criterion, the specific surface energy must be defined per unit
fractal measure~not length or area! of fractal crack growth. Yavari
@24# generalized Barenblatt’s cohesive fracture theory and de
oped a fractal cohesive fracture theory.

To our best knowledge, there is no investigation into frac
cracks in micropolar~Cosserat! solids. This paper aims to explor
some interesting problems of micropolar fractal fracture mech
ics. In Section 2, micropolar elasticity is reviewed and its ba
concepts and definitions are explained. Section 3 discusses
ture mechanics of rectilinear cracks in micropolar solids. The
fects of couple-stresses in fracture mechanics are reviewed
Griffith’s criterion is generalized for both smooth and fract
cracks in micropolar solids in Section 4. Section 5 studies s
similar and self-affine fractal cracks in micropolar solids. Usi
dimensional analysis and the method of crack-effect zone, i
shown that stresses and couple-stresses at the tip of a fractal
in a micropolar solid have equal orders of singularity. The Appe
dix presents some basic definitions and techniques of fractal
ometry that are directly relevant to our investigation.

2 Micropolar Elasticity
This section presents a brief introduction to generalized c

tinuum theories and their history. Here we discuss only those
pects of micropolar elasticity theory that are necessary for
investigation of fractal cracks in a micropolar solid. A literatu
review for fracture mechanics of rectilinear cracks in micropo
solids will be given in the next section.

In classical continuum mechanics, at each point only tran
tional degrees-of-freedomui ( i 51,2,3) are considered and it i
assumed that the interaction between two material points alon
arbitrary surfaceS is completely described by a stress vectors
defined onS. These assumptions lead to a mathematically con
tent theory of continuum mechanics. Experience has shown
most analytical solutions obtained in the framework of classi
continuum mechanics agree very well with the experimental

ries,
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sults. To data all engineering designs are based on the us
classical continuum mechanics and sometimes even with s
more simplifying assumptions.

The curiosity of some distinguished researchers led them
question the above-mentioned hypotheses and to develop gen
ized continuum theories. It was clear for them that consider
only translational degrees-of-freedom might not be enough
continua with microstructure~see@25–37#!.

In the original Cosserat brothers’ formulation~@26#!, rotations
f i ( i 51,2,3) were considered to be independent of displacem
componentsui ( i 51,2,3). However, later most analytical solu
tions were reported for a special case that is now known
couple-stress theory or constrained Cosserat theory. In cou
stress theory, microrotations are assumed to be equal to mac
tations, i.e.,f i51/2« i jkuk, j . This is the theory that was develope
independently by Grioli@28#, by Aero and Kuvshinskii@31#, and
by Mindlin and Tiersten@32#. Eringen and his co-workers elabo
rately studied the theory of Cosserat continua and again assu
that microrotations are independent of displacement compone
Eringen @36,37# renamed the Cosserat continuum theory a
called it micropolar continuum theory. Cowin@38–40# discovered
a continuous transition from couple-stress theory to micropo
theory by introducing a coupling numberN (0<N<1), where
N51 corresponds to the couple-stress theory,N50 corresponds
to the classical theory, andN between zero and one (0,N,1)
corresponds to the micropolar theory. It is known that in coup
stress theory of elasticity two new constants appear and on
them,l has the dimension of length and is called the character
length. On the other hand, in micropolar elasticity there are f
new material constants and two of them,l t and l b have dimen-
sions of length and are called characteristic lengths in torsion
bending, respectively. This means that in generalized continu
theories there is at least one internal length scale and there
these theories should be able to analytically predict size effec

Several authors investigated the effects of couple-stresse
different problems of solid mechanics such as stress concentr
in the presence of holes and inclusions and the change of
effect in rigidity of different structural members~see@41–62#!.
Recently, there have been some investigations into strain grad
plasticity ~see@63# and references therein!. These theories seem t
be promising in design of very small structures.

As was mentioned at the beginning of this section, generali
continuum theories attracted theoreticians because of their be
To date these theories have not been applied to practical probl
Here we have an example of a field in which experimental stud
are far behind the theory. There are several experimental inv
gations into the mechanical properties of micropolar elastic m
rials. What we have at this time are just some ranges of th
material constants~Schijve @64# and Lakes@60#!. So far we have
only some qualitative sense of the influences of couple stres
We are hopeful that future advances in experimental mecha
will make these elegant theories applicable to real enginee
problems.

It is worth mentioning that there is a recent interest in gene
ized continuum theories because of the superiority they hav
localization analyses. These studies are beyond the scope o
section and will not be mentioned here. Now we present the b
concepts, definitions, and balance equations of the theory of
cropolar elasticity. Here we mainly follow Eringen@37#.

In a continuous medium with microstructure each material e
ment contains several micromaterial elements. In micropolar c
tinuum mechanics only microrotations are considered for mic
elements. Therefore, for each material point, in addition to
three displacements, three microrotations are considered. Micr
tations are assumed to be different from macrorotations. Displ
ment components are denoted byui , microrotations byf i , and
macrorotations byr i . Macrorotations have the following relation
with displacements:
46 Õ Vol. 69, JANUARY 2002
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r i5
1

2
« i jkuk, j (1)

where« i jk is the permutation symbol. Macrostrainsei j and mi-
crostrains« i j are defined as

ei j 5
1

2
~ui , j1uj ,i ! (2a)

« i j 5ei j 1ei jk~r k2fk!. (2b)

Curvature tensor is defined by

x i j 5f j ,i . (3)

As a consequence of the assumption that each point has
degrees-of-freedom, in a micropolar continuum both stresses
couple-stresses exist and Cauchy’s theorem holds for them, i

s i5s j i nj (4a)

mi5mji nj (4b)

wheres i andmi are components of stress and couple-stress v
tors, respectively,ni is the unit normal vector to an arbitrary su
face S, and s i j and mi j are respective stress and couple-stre
tensors. Stress and couple-stress tensors are in general asym
ric. The equilibrium equations are

s j i , j50 (5a)

mji , j1« i jks j ,k50. (5b)

For a centrosymmetric isotropic micropolar material the stre
strain relations are

s i j 5lekkd i j 1~2m1k!ei j 1k« i jk~r k2fk! (6a)

mi j 5afk,kd i j 1bf i , j1gf j ,i (6b)

wherel andm are the classical Lame´ constants anda, b, g, and
k are new micropolar constants with the following dimensions

@a#5@b#5@g#5F5
M

L
and @k#5

F

L2 5
M

L3 (7)

whereF, M, andL are dimensions of force, moment, and leng
respectively. The strain energy density has the following form

W5
1

2
~s i j « i j 1mi j x i j !5

1

2
@lekkemm1~2m1k!ei j ei j #

1k~r k2fk!~r k2fk!1
1

2
~afk,kfm,m

1bf i , jf j ,i1gf i , jf i , j !. (8)

The following technical elastic constants have clearer phys
meanings~@59#!:

E5
~2m1k!~3l12m1k!

2l12m1k
, G5

2m1k

2
, n5

l

2l12m1k
(9a)

l t5A b1g

2m1k
, l b5A g

2~2m1k!
(9b)

N5A k

2~m1k!
, c5

b1g

a1b1g
(9c)

whereE, G, n, l t , l b , N, andc are Young’s modulus, Poisson’
ratio, the characteristic length in torsion, the characteristic len
in bending, coupling number, and polar ratio, respectively. Th
constants have the following dimensions:

@E#5@G#5FL22, @n#51

@ l t#5@ l b#5L (10)
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It is seen that two internal characteristic lengths exist. Theref
this theory is capable of analytically predicting size effects. It
worth mentioning that these characteristic lengths appear in
stress field solutions even for force control loading conditio
Therefore, in dimensional analysis formulations these charact
tic lengths must be taken into account.

3 Fracture Mechanics of Smooth Cracks in Micropo-
lar Solids

In this section, fracture mechanics of smooth cracks in a
cropolar solid is reviewed. Here, the effects of couple-stresse
the stress distribution around the tip of a smooth crack are
cussed. In 1960s and 1970s when generalized continuum the
were rediscovered and elaborately developed, several resear
became interested in examining the influence of couple-stress
problems in which classical theory predicts infinite stresses. O
such problem with great practical importance was the stress
tribution near the tip of a smooth crack. It was known that stres
and strains around the tip of a crack are unbounded and hav
r 21/2 singularity. Researchers were hopeful not to see this pa
logical problem in higher-order continuum theories. Unfort
nately, higher-order continuum theories could not solve this pa
logical problem; both stresses and couple-stresses were obs
to be unbounded at the crack tip. There is a limited numbe
investigations in micropolar fracture mechanics, which will
reviewed in this section.

The first investigation into fracture mechanics of smooth cra
in Cosserat continua was performed by Sternberg and Muki@65#.
They solved the problem of an infinite two-dimensional plan
strain linear couple-stress medium with a finite crack under a
form tensile stress state perpendicular to the crack axis at infi
They showed that both stresses and couple-stresses have anr 21/2

singularity at the crack tip. They observed that couple-stres
only change the angular variation of stresses around the crack
the form of the radial variation of stresses remains unchang
They found the following asymptotic expressions for stresses
couple-stresses:

sxx~r ,u!52~122n!
KI

A2r
Fcos

u

2
2

1

2
sinu sin

3u

2 G1O~r 0!

(11a)

syy~r ,u!5
KI

A2r
F ~322n!cos

u

2
2

1

2
~122n!sinu sin

3u

2 G
1O~r 0! (11b)

sxy~r ,u!52
KI

A2r
F4~12n!sin

u

2
1

1

2
~122n!

3sinu cos
3u

2 G1O~r 0! (11c)

syx~r ,u!52~122n!
KI

A2r
F1

2
sinu cos

3u

2 G1O~r 0! (11d)

and

mxz~r ,u!52
K̂ l

A2r
Fa

2
sin

u

2G1O~r 0! (12a)

mxz~r ,u!5
K̂ l

A2r
Fa

2
cos

u

2G1O~r 0! (12b)

wheresxx , syy , sxy , syx are ~force-! stresses andmxz andmyz
are couple-stresses and
Journal of Applied Mechanics
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KI5 f S l

a
,n Ds`Aa and K̂ l5 f̂ S l

a
,n Ds`Aa (13)

whereKI and K̂ l are stress- and couple-stress intensity factorsn
is Poisson’s ratio,l is the characteristic length of the couple-stre
material, and 2a is the crack length. Later Sih and Liebowitz@66#
found the asymptotic expressions of the displacement and rota
components as shown below:

ur~r ,u!5
KIA2r

8m F3~122n!cos
u

2
2~726n!cos

3u

2 G1O~r !

uu~r ,u!5
KIA2r

8m F2~122n!sin
u

2
1~726n!sin

3u

2 G1O~r !

(14)

vz~r ,u!5
K̂ lA2r

8m l 2 Fa sin
u

2G1O~r !.

For a crack in a Cosserat continuum, strain energy release ma
calculated as

G5 lim
da→0

1

da E0

da

@syy~da2j,0!uy~j,p!

1myz~da2j,0!vz~j,p!#dj. (15)

Using the above formula, Sih and Liebowitz@66# found the strain
energy release rate.

G5
p

2m F ~12n!~322n!KI
21

1

16 S a

l D
2

K̂ I
2G (16)

There are some other interesting investigations into fract
mechanics of cracks in micropolar solids~see@67–73#!. Now it is
known that the classical theory underestimates the value ofKI and
overestimates the energy release rateG.

Another interesting investigation into micropolar fracture m
chanics was conducted by Atkinson and Leppington@74#. They
analyzed two problems:~1! a semi-infinite crack under an interna
stress acting on the crack faces and~2! a finite crack in an infinite
solid under a uniform stress at infinity. They solved the seco
problem only for cases in whichl /a is very small (l /a!1). They
showed that both stresses and couple-stresses at the tip of a
in a couple-stress or micropolar medium have anr 21/2 singularity.
They also demonstrated that the angular variations of stresses
couple-stresses in couple-stress and micropolar continua a
little different but have a similar form. Atkinson and Leppingto
defined theJ-integral for both couple-stress and micropolar the
ries and showed thatJ-integral is path-independent. Recentl
Lubarda and Markenscoff@75# studied some conservation inte
grals for linear couple-stress elasticity.

4 Micropolar Griffith’s Criterion
For finding the orders of stress and couple-stress singularit

the tip of a fractal crack, we utilize an energy approach. T
fractal crack is in equilibrium and hence the virtual work of a
forces in a virtual displacement, which is an infinitesimal cra
growth, is zero. For a cracked body, the principle of virtual wo
must be modified to take into account the work done in a cr
propagation and strain energy release due to a crack growth. G
fith’s @76,77# criterion is actually a modified energy balance f
cracked bodies. In this section we generalized Griffith’s theory
smooth and fractal cracks in micropolar solids.

4.1 Griffith’s Theory for a Smooth Crack in a Micropolar
Solid. When a crack propagates, new free surfaces are crea
For creating these new free surfaces some amount of surface
ergy is needed to overcome the cohesive forces. This amoun
energy is provided by an equal amount of strain energy rele
This is Griffith’s criterion@76,77#, which was originally stated for
JANUARY 2002, Vol. 69 Õ 47



48 Õ V
Fig. 1 Mechanism of crack propagation in a micropolar continuum: „a… crack-tip particles withstand rotation and
separation, „b… the first step in crack propagation—crack-tip particles rotate with respect to each other, and „c…
the second step in crack propagation—crack-tip particles move apart and neighboring particles become the next
crack-tip particles
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a rectilinear crack in a classical continuum. Mosolov@11# used
this criterion for fractal cracks assuming that the specific surf
energy per unit length remains unchanged and only the lengt
the crack increases in the case of a fractal crack. Later, Boro
@22,23# noticed that Griffith’s criterion must be modified and
the modified criterion the specific surface energy must be defi
per unit of a fractal measure. To our best knowledge, there is
discussion on Griffith’s criterion for cracks in micropolar solid
This theory can be easily generalized for smooth and fra
cracks in a micropolar solid, as we show below.

In a micropolar continuum each material point can rotate a
translate independently. Now suppose that there is a finite crac
length 2a in a micropolar solid. Figure 1~a! shows a crack and
some particles~material points! on the crack surfaces. When th
crack propagates, crack-tip particles separate from each other
like a crack in a classical solid, this separation of crack-tip p
ticles is a two-step process as shown in Figs. 1~b! and 1~c!. In the
first step crack-tip particles rotate with respect to each other
do not move, i.e.,

Df5f22f1Þ0 and Du5u22u150. (17)

In the next step, crack-tip particles move apart but do not rot
i.e.,

Du5u22u1Þ0 and Df5f22f150. (18)

After this step, these particles are no longer crack-tip partic
they belong to two free surfaces~see Fig. 1~c!!. Obviously, the
surface energydUs needed for creating the new free surfaces h
two parts,dUs

f anddUs
u , wheredUs

f is the surface energy spen
on rotating particles in the path of crack growth anddUs

u is the
surface energy spent on separating these particles from each
Figure 2 shows a crack and the dashed line is the crack prop
tion path. Crack-tip particles on the path of crack propagation
shown in this figure. Similar to the surface energy release r
strain energy release rate is composed of two parts: stress
dUe

s , and couple-stress partdUe
m .
ol. 69, JANUARY 2002
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Griffith’s criterion for a crack in a micropolar solid may b
stated in two different forms, depending on whether the effects
stresses and couple-stresses are considered uncoupled or co

(I) Uncoupled Micropolar Griffith’s Criterion. This form of
Griffith’s criterion states that a crack propagates by an amountda
if the following conditions are satisfied simultaneously:

dUe
s5dUs

u2tguda (19a)

dUe
m5dUs

f52tgfda (19b)

where t, gu , and gf are thickness, displacement, and rotati
specific surface energies, respectively. Dimensions of these
surface energies are@gu#5@gf#5FL21.

(II) Coupled Micropolar Griffith’s Criterion. In this form of
the Griffith’s criterion effects of stresses and couple-stresses

Fig. 2 A crack in a micropolar solid and its propagation path.
The particles shown are the particles on the subsequent free
surfaces.
Transactions of the ASME
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assumed to be coupled. Coupled micropolar Griffith’s criter
states that the crack propagates by an amountda if

dUe5d~Ue
s1Ue

m!5dUs52tgmda52t~gu1gf!da. (20)

It should be noted that the micropolar specific surface energygm
is generally different from the classical specific energyg. Obvi-
ously, if ~19a! and ~19b! are satisfied,~20! is automatically satis-
fied. In other words, the uncoupled criterion is stronger than
coupled criterion.

4.2 Griffith’s Criterion for a Fractal Crack in a Micropo-
lar Solid. For a smooth crack, surface energy required for cra
propagation is proportional to the length~area! of the newly cre-
ated free surfaces. In the case of a fractal crack the true le
~area! of new free surfaces should be considered. Because the
length~area! of a fractal curve~surface! is infinity, a fractal mea-
sure should be utilized. The surface energy required to crea
fractal crack in a classical solid is

Us52tg f~D !mD (21)

where t is the plate thickness,g f5g f(D) is the specific surface
energy per unit of a fractal measure, andmD is the corresponding
fractal measure and is proportional toaD ~see the Appendix!. Spe-
cific surface energy per unit of a fractal measure was introdu
by Borodich@22,23# and has the dimension@g f #5FL2D, whereF
andL are dimensions of force and length, respectively. There
two important issues arising from Borodich’s generalization
Griffith’s criterion that should be explained:~1! It should be noted
thatg f is not a material property. In general, it is possible to ha
cracks with different fractal dimensions in the same mater
Therefore, in Eq.~21! g f cannot be a material property; it depen
on both the material and the fractal dimensions of the fra
crack.~2! ‘‘Fractal measure’’ is an ambiguous term; there are d
ferent definitions of dimension and consequently these diffe
dimensions have different corresponding measures. For
similar fractals all different dimensions have the same value
hence the corresponding measures they define are iden
Therefore, for self-similar fractals ‘‘fractal measure’’ is not a
ambiguous term. However, this is not the case for self-affine fr
tals; different definitions of dimension give completely differe
dimensions for the same self-affine fractal set. Obviously, the
evant fractal dimension for calculating the surface energy o
fractal crack is the divider~latent! fractal dimension. Therefore
the specific surface energy should be defined per divider fra
measure, although it can be defined for other fractal measure
well.

For a fractal crack in a micropolar solid, Griffith’s criterio
again has uncoupled and coupled forms and only the surface
ergies should be modified as

dUs
u52tgu

f ~DDD
!dmDD

and dUs
f52tgf

f ~DD!dmDD

(22a)

dUs5dUs
u1dUs

f52t@gu
f ~DD!1gf

f ~DD!#dmDD
(22b)

wheregu
f andgf

f are fractal specific surface energies per unit
latent fractal measure andmDD

is the latent fractal measure. Thu
we have the following two forms of fractal micropolar Griffith’
criterion.

(I) Uncoupled Fractal Micropolar Griffith’s Criterion. A
fractal crack with divider fractal dimensionDD propagates by an
amountdmDD

if the following two conditions are satisfied simu
taneously:

dUe
s5dUs

u52tgu
f dmDD

(23a)

dUe
m5dUs

f52tgf
f dmDD

. (23b)
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(II) Coupled Fractal Micropolar Griffith’s Criterion. A frac-
tal crack with divider fractal dimensionDD propagates by an
amountdmDD

if the following condition is satisfied:

dUe5d~Ue
s1Ue

m!5dUs52tgm
f dmDD

52t~gu
f 1gf

f !dmDD
.
(24)

In the next section we use both forms of micropolar Griffith
criterion for calculating the orders of stress and couple-stress
gularity at the tip of a fractal crack. We will show that both criter
give equal orders of stress and couple-stress singularity.

5 Fractal Cracks in Micropolar Elastic Solids
In this section radial variations of stresses and couple-stre

around the tip of a fractal crack in a micropolar solid are inves
gated. To the best of our knowledge, there is no investigation
this problem in the literature. Without loss of generality, a mod
problem is solved. Consider an infinite medium made of a m
cropolar material with a finite crack of nominal length 2a. It is
assumed that the cracked solid is under a uniform tensile stress`

perpendicular to the crack axis applied at infinity~see Fig. 3~a!!.
One major difference between this problem and the sim

problem of a fractal crack in a classical solid is that a micropo
material has two internal characteristic length scales,l b and l t .
Here l b and l t are characteristic lengths in bending and torsio
respectively. On the other hand, a couple-stress material has
one characteristic lengthl. For a micropolar material in a two
dimensional problem only one of the characteristic lengths
pears in the equilibrium equations. Therefore, it is assumed
the medium has a characteristic length and it is denoted byl. It is
known that even for a force control loading this characteris
length appears in the stress solutions in the form ofl /a, where
‘‘a’’ is a geometric characteristic length of the problem, for e
ample hole radius or crack length.

The method of crack-effect zone, which was introduced by Y
vari et al.@16#, is utilized. When the system shown in Fig. 3~a! is
uncracked, only one of stress components is nonzero and h
uniform distribution; all other stresses and all couple-stresses
identically zero. When the crack is formed, stresses and cou
stresses are perturbed. This stress perturbation is significant
in a finite zone around the crack. For the cracked system
stresses and couple-stresses are nonzero in the crack-effect
The crack-effect zone may be covered by a diskRc , as shown in
Fig. 3~a!. We assume that the micropolar material is centrosy
metric isotropic and homogeneous. The strain energy of the
tem may be written as

Ue5Ue
s1Ue

m5E
R
S 1

2
s i j « i j 1

1

2
mi j x i j DdV (25)

wheres i j , mi j , « i j , andx i j are stresses, couple-stresses, stra
and curvatures, respectively. The strain energy can be decomp
into two parts as follows:

Ue5E
R2Rc

S 1

2
s i j « i j 1

1

2
mi j x i j DdV

1E
Rc

S 1

2
s i j « i j 1

1

2
mi j x i j DdV. (26)

When the crack propagates by an infinitesimal amountda, the
change of the strain energy inRc is dominant, hence

dUe>dE
Rc

S 1

2
s i j « i j 1

1

2
mi j x i j DdV. (27)

For a centrosymmetric material stress-strain and couple-str
curvature relations are uncoupled, i.e., stresses are not func
of curvatures and couple-stresses are not functions of stra
Therefore, the constitutive equations may be written as

s i j 5Ci jkl «kl and mi j 5Ĉi jkl xkl (28)
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Fig. 3 „a… A two-dimensional micropolar solid with a finite fractal crack perpendicular to the applied stresses, „b… an infinite
micropolar solid with a finite fractal crack parallel to the applied stresses
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whereCi jkl andĈi jkl are fourth-order tensors and are mechani
properties of the material. The following asymptotic stresses
couple-stresses are assumed at the crack tip

s i j ~r ,u!5KIr
2a1f i j S u,n,

l

a
,H D (29a)

mi j ~r ,u!5K̂ l r
2a2 f̂ i j S u,n,

l

a
,H D (29b)

whereKI
f andK̂ l

f are fractal stress and couple-stress intensity f
tors, respectively, andH is the Hurst exponent~see the Appendix!.
We will calculatea1 and a2 using the method of crack-effec
zone. The above asymptotic stresses and couple-stresses are
nant forr<r s1

andr<r s2
, respectively. Therefore, Eqs.~29a! and

~29b! are valid in a diskRs with radiusr s5min(rs1
,rs2

). Here, the
method of crack-effect zone should be used very carefully.
cause the change ofUe in Rs is dominant, the change of strai
energy may be expressed as

dUe5dE
Rc2Rs

S 1

2
s i j « i j 1

1

2
mi j x i j DdV1dE

Rs

S 1

2
s i j « i j

1
1

2
mi j x i j DdV>dE

Rs

S 1

2
s i j « i j 1

1

2
mi j x i j DdV. (30)

From ~29! and ~30! we have

dUe5dUe
s1dUe

m (31a)

dUe
s}d~r s

2a1r s
2a1r s

2! and dUe
m}d~r s

2a2r s
2a2r s

2! (31b)

where ‘‘}’’ means ‘‘proportional to.’’ For a rectilinear or fracta
crack in a micropolar continuumr s is not necessarily proportiona
50 Õ Vol. 69, JANUARY 2002
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to ‘‘ a.’’ Here r s is a function of a, l, n, and H, i.e., r s
5 f (a,l ,n,H). Using Buckingham’s~@78,79#! P theorem we must
have

r s

a
5F̂S l

a
,n,H D or r s5aF̂S l

a
,n,H D . (32)

As it is seen from~32!, r s is not necessarily proportional to ‘‘a.’’
The functional form ofF̂ cannot be found using dimensiona
analysis and this makes the use of crack-effect zone method
difficult. But we know that for most engineering materialsl is
very small (l /a!1). We also know that the following limit exists

lim l /a→0 F̂S l

a
,n,H D5F̂~0,n,H !5F~n,H ! (33)

because whenl /a tends to zero for a constant ‘‘a’’ we approach
the classical theory and obviouslyF̂ is defined for the classica
theory and is finite. Thus we have a complete similarity or
similarity of the first kind~see, for example, the excellent book
Barenblatt@80#!. Therefore according to dimensional analysis f
very small l /a( l /a!1)F̂ can be considered independent ofl /a
and replaced by its limitF. Therefore,r s;a for l /a!1. As a
matter of fact, we do not need to limit ourselves to the casel /a
!1. We can show thatF̂ is not a function ofl /a as we see in the
following. We know that for a smooth crack both stresses a
couple-stresses have anr 21/2 singularity regardless of the size o
the characteristic length~s! of the cracked micropolar materia
Suppose that the radius of the dominant zone of stress and co
stress singularity isr s . Thus, dUs}d(r s

222a)5d(r s) and dUs
}d(a). Therefore, according to Griffith’s criterion we must hav
r s}a. Thus
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F̂S l

a
,n,H51D5 f ~n!. (34)

For a fractal crackH is a local parameter whilel /a is a global
parameter. The reason is thatH is defined only for the fracta
crack, which has 2-measure~area! zero butl /a is defined for all
points of the domain other than the crack. Therefore, we expecF̂
to be separable, i.e.,

F̂S l

a
,n,H D5F̂1S l

a
,n D F̂2~n,H !. (35)

From ~34! and ~35! we obtain

F̂S l

a
,n,H D5F̃~H,n!. (36)

Therefore,r s is always proportional to ‘‘a’’ regardless of the value
of l /a.

From ~31b! we have

dUe
s}d~a222a1! and dUe

m}d~a222a2!. (37)

The next thing we need is the asymptotic form of surface energ
From ~22! we have

dUs
u}dUs

f}dUs}H d~a1/H!
1

2
<H,1

d~a2! 0,H<
1

2

. (38)

We use both forms of Griffith’s criterion and show that they gi
us the same result.

Using uncoupled micropolar Griffith’s criterion is easier a
yields

d~a222a1!}H d~a1/H!
1

2
<H,1

d~a2! 0,H<
1

2

(39a)

d~a222a2!}H d~a1/H!
1

2
<H,1

d~a2! 0,H<
1

2

. (39b)

Thus

a15a25H 2H21

2H

1

2
<H,1

0 0,H<
1

2

. (40)

Using coupled Griffith’s criterion is tricky. From~20!, ~38!, and
~39! we obtain

C1d~a222a1!1C2d~a222a2!}H d~a1/H!
1

2
<H,1

d~a2! 0,H<
1

2

(41)

whereC1 andC2 are not functions ofa. We prove by contradic-
tion thata1 anda2 must be equal. Suppose thata1Þa2 and for
examplea1.a2 . Notice that ‘‘}’’ means ‘‘proportional to’’ and
that Eq.~41! holds for an arbitrary crack length ‘‘a.’’ For a very
large ‘‘a’’ ( a@1) we can write

a222a2@a222a1. (42)

Hence
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C1d~a222a1!1C2d~a222a2!

>C2d~a222a2!}H d~a1/H!
1

2
<H,1

d~a2! 0,H<
1

2

(43)

Thus

a25H 2H21

2H

1

2
<H,1

0 0<H<
1

2

(44)

On the other hand, for a very small ‘‘a’’ ( a!1) we can write

a222a1@a222a2. (45)

Thus

C1d~a222a1!1C2d~a222a2!

>C1d~a222a1!}H d~a1/H!
1

2
<H,1

d~a2! 0,H<
1

2

. (46)

Hence

a25H 2H21

2H

1

2
<H,1

0 0,H<
1

2

. (47)

From ~44! and~47! we see thata15a2 , which is a contradiction.
Therefore our assumption was false anda1 anda2 must be equal,
i.e.,

a15a25H 2H21

2H

1

2
<H,1

0 0,H<
1

2

. (48)

Therefore

s i j ;r
22H21

2H
, mi j ;r

22H21

2H
as r→0

1

2
<H,1

(49a)

s i j ;r 0, mi j ;r 0 as r→0 0,H<
1

2
. (49b)

It is seen that both forms of Griffith’s criterion yield the sam
result: stresses and couple-stresses have equal orders of sin
ity and this order of singularity is the same as that of stresse
the tip of a fractal crack in a classical continuum. This result
similar to that reached by Sternberg and Muki@65#: that in a
couple-stress medium at the tip of a smooth crack both stre
and couple-stresses haver 21/2 singularities. This is also true fo
self-similar cracks; orders of stress and couple-stress singul
are equal.

A similar result can be reached for mode IV self-affine crac
A mode IV fractal crack is shown in Fig. 3~b!. This new mode of
fractal fracture was introduced by Yavari@15# and Yavari et al.
@14#. As was done for a mode I fractal crack, the orders of str
and couple-stress singularity can be calculated. The only mo
cation in the analysis is to change Eq.~37! to read~@14,16#!

dUe
s}d~a11H22a1H! and dUe

m}d~a11H22a2H! (50)
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The stresses and couple-stresses have the following asymp
forms:

s i j ;r
2H22H11

2H2 , mi j ;r
2H22H11

2H
as r→0

1

g
<H,1

(51a)

s i j ;r 0, mi j ;r 0 as r→0 0,H<
1

g
(51b)

whereg5(A511)/2 is the Golden ratio. All four modes of frac
ture are shown in Fig. 4.~Actually, there are six modes. We foun
the fifth and sixth modes very recently~@16#!!.

For three-dimensional cracked bodies made of a couple-s
material or a micropolar material a similar conclusion can
reached.

6 Conclusions
Fracture mechanics of smooth cracks in micropolar continu

reviewed. Griffith’s fracture theory is generalized for rectiline
and fractal cracks in micropolar continua. It is seen that Griffit
criterion can have two forms: uncoupled micropolar Griffith’s c
terion and coupled micropolar Griffith’s criterion. Using dime
sional analysis and the method of crack-effect zone it is sho
that both forms of Griffith’s criterion predict that stresses a
couple-stresses have the same order of singularity. This orde
stress and couple-stress singularity is shown to be equal to th
stresses at the tip of a fractal crack in a classical continuum.
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Appendix

Fractal Geometry. This Appendix presents some concep
and definitions of fractal geometry. Here we discuss only th
aspects of fractal geometry that are directly relevant to our inv
tigation. For more details the reader may refer to Mandelb
@2,81–83#, Feder@84#, Vicsek @85#, and Falconer@86,87#.

Suppose thatUÞB is a subset ofRn. The diameter ofU is
defined as

diam~U !5sup$ux2yu:x,yPU%. (A1)

An «-cover of S is a countable or finite collection of sets$Ui%
such that

1. 0,diam(Ui)<«,

Fig. 4 The four modes of fractal fracture: mode I „opening
mode …, mode II „shearing mode …, mode III „tearing mode …, and
mode IV „axial mode …
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Consider a setS,Rn. An affine transformation of real scaling
ratios r 1 ,r 2 , . . . ,r n (0,r i,1) transforms each x
5(x1 ,x2 , . . . ,xn)PS into r (x)5(r 1x1 ,r 2r 2 , . . . ,r nxn)Pr (S).
The setS is self-affine if it is composed ofN nonoverlapping
subsets congruent tor (S). If the above property holds forSwhen
r 15r 25 . . . 5r n5r , it is called a self-similar set. A self-simila
fractal is invariant under an isotropic length-scale transformat
while a self-affine fractal is invariant under a transformation w
different length scales in different directions.

Roughly speaking, measure of a setS,Rn tells us about the
size of the set and is denoted bym(S). In other words, measure i
a generalized size.m is a measure onRn if it assigns a non-
negative real number~possibly 1`! to each subset ofRn and
satisfies the following requirements:

1. m(B)50
2. m(A)<m(B) if A,B
3. If A1 ,A2 , . . . is a finite or countable sequence of subsets

Rn then

mS ø
i51

`

AiD<(
i51

`

m~Ai! (A2)

with equality if Ai ’s are disjoint subsets ofRn.

Now suppose thatS,Rn andDPR1ø$0%. TheD-dimensional
Hausdorff measure ofS is denoted byHD(S) and is defined as

HD~S!5 lim«→0 H«
D~S! (A3)

where

H«
D~S!5 infH(

i 51

`

diam~Ui !
D:$Ui% is an « – cover of SJ

(A4)

It can be shown thatHD has all the properties of a measure. It c
be proved that for any setS, HD(S) has a jump from1` to 0 for
one and only one value ofD, which is called the Hausdorff di-
mension ofS, i.e.,

DH5 inf$D:HD~S!50%5sup$D:HD~S!51`%. (A5)

Therefore

HD~S!5H 1` D,DimHS

0 D.DimHS
. (A6)

There are many other definitions of dimension. One disadv
tage of Hausdorff dimension is the difficulty of calculating
which makes it impractical. Here we discuss two other import
dimensions, namely box dimension and divider dimension.
different dimensions somehow measure the complexity of irre
larity of a set. It should be emphasized that dimension provi
only limited information about a fractal set. In most definition
there is a measurement at scale«. For each« irregularities below
this scale are ignored and the behavior of measurements«
→0 is studied.
Box dimension: Let SÞB be a subset ofRn and letN«

B(S) be the
smallest number of sets of diameter at most« which can coverS.
Box dimension ofS is DB if

N«
B~S!50~«2DB! as «→0 or DB5 lim«→0

log N«
B~S!

2 log «
(A7)

whereO is Landau’s order symbol. It can be shown that alwa
DH<DB . For self-similar fractals the equality holds. Box me
suremDB

is defined as
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mDB

« 5N«
B~S!«DB

5 infH(
i

«DB:$Ui% in a finite « – cover of SJ ,

mDB
5 lim«→0mDB

« . (A8)

In calculating Hausdorff measure different weightsuUi us are as-
signed to covering setsUi while in box measure the same weig
«DB is used for all covering sets. It should be noted thatmDB

is not

a mathematical measure on subsets ofRn because it is not
s-additive.~It is actually a ‘‘content.’’!
Divider dimension: This is the most important dimension in ap
plications to fractal fracture mechanics problems. Consider a
dan curveC ~a curve that does not intersect itself! f :@a,b#→Rn,
where f is a bijection ~a one-to-one and onto function!. For «
.0 define N«

D(C) to be the maximum number of point
x0 ,x1 ,x2 , . . . ,xm on C such that uxk2xk21u5« for k
51,2, . . . ,m. Therefore, the approximate length of the cur
L«(C) is L«(C)5O@(N«

D(C)21)«#. The divider dimension ofC
is DD if

L«~C!5O~«12DD! as «→0 or N«
D~C!5O~«2DD! as «→0.

(A9)

We know thatN«
D(C) is dimensionless while« has dimension of

length. Therefore from~A9! we conclude that

N«
D~C!;S «

L0
D 2DD

or N«
D~C!;«2DDL0

DD (A10)

whereL0 is the nominal length ofC. It can be shown that for any
Jordan curveC, DD>DB . For self-similar curves the equalit
holds. Divider measuremDD

is defined as

mDD

« 5N«
D~C!«DD, mDD

5 lim«→0 mDD

« . (A11)

From ~A10! and ~A11! we can write

mDD
;L0

DD or mDD
5hL0

DD. (A12)

Like box measure, divider measure is not a mathematical mea
because it is nots-additive.

Consider a topologically one-dimensional set. Suppose that
set can be expressed as the graph of a single-valued functionF(t)
embedded inR2. ThenF(t) is a self-affine function if

F~ t !5r 2HF~rt ! ;r ,tPR (A13)

where H(0,H,1) is the Hurst ~roughness! exponent.
Weierstrass-Mandelbrot function is an example of a self-affi
function and is defined as

WM~x!5(
2`

1`

a2nH@12cos~anx!# a.1, 0,H,1.

(A14)

This function satisfies the invariance relation~A13!. It can be
shown that for a self-affine curve locally («<«x) we have

DB522H and DD5H 1

H

1

2
<H,1

2 0,H<
1

2

(A15a)

and globally («>«x)

DB5DD51. (A15b)

The length scale«x is called the crossover length («x
H>«x). In

general, for a self-affine fractal~with Hurst exponentH! embed-
ded in Rn the divider and box dimensions are locally related
roughness exponent by
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H

n21

n
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n 0,H<
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n

(A16a)

DB5n2H. (A16b)

And globally,DD5DB5n21.
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With Microstructure, H.-B. Mühlhaus, ed., John Wiley and Sons, New York

@62# Anthoine, A., 2000, ‘‘Effect of Couple-Stresses on the Elastic Bending
Beams,’’ Int. J. Solids Struct.,37, pp. 1003–1018.

@63# Hutchinson, J. W., 2000, ‘‘Plasticity in the Micron Scale,’’ Int. J. Solids Struc
37, pp. 225–238.

@64# Schijve, J., 1966, ‘‘Note on Couple Stresses,’’ J. Mech. Phys. Solids,14, pp.
113–120.

@65# Sternberg, E., and Muki, R., 1967, ‘‘The Effect of Couple-Stresses on
Stress Concentration Around a Crack,’’ Int. J. Solids Struct.,3, pp. 69–95.

@66# Sih, G. C., and Liebowitz, H., 1968,Mathematical Theories of Brittle Fracture
~In Fracture, Vol. II!, H. Liebowitz, ed., Academic Press, New York, pp. 67
190.

@67# Ejike, U. B. C. O., 1969, ‘‘The Plane Circular Crack Problem in the Lineariz
Couple-Stress Theory,’’ Int. J. Eng. Sci.,7, pp. 947–961.

@68# Kim, B. S., and Eringen, A. C., 1973, ‘‘Stress Distribution Around an Ellipt
Hole in an Infinite Micropolar Elastic Plate,’’ Lett. Appl. Eng. Sci.,1, pp.
381–390.
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Introduction
Studies on piezoelectric materials were reported actively du

the last decade. It is because the piezoelectric materials have
used in various applications of the electromechanical devices
as actuators, sensors, and transducers, since the brothers
discovered the electromechanical coupling phenomenon of pi
electric material in 1880. It is well known that defects, such
dislocations, cracks, cavities, and inclusions, can adversely in
ence the performance of such piezoelectric devices. For exam
these defects carrying charges in piezoelectric semiconductors
be sources of internal electro-elastic fields~@1#!. Therefore, in or-
der to predict the performance and integrity of piezoelectric
vices, it is important that the behaviors of various defects
analyzed and studied under the electrical and mechanical fie

Deeg@2# studied the general defect mechanics of a piezoelec
material using Green’s function method and modeling the de
with a collinear dislocation and charge dipole line. Later, Pak@3#
considered the fracture mechanics problem of a finite crack,
he ~@4#! derived the generalized Peach-Koehler forces acting o
screw dislocation in an unbounded piezoelectric material s
jected to far-field electromechanical loads. Recently, efforts h
been made to develop the inclusion models in a piezoelectric
terial ~Wang @5#, Chen@6#, Liang et al.@7#, Chung and Ting@8#,
and Zhong and Meguid@9#!. However, the interaction betwee
defects in piezoelectric media have been little considered. M
recently, Meguid and Deng@10# discussed the electro-elastic in
teraction between a screw dislocation and an elliptical inhomo
neity in piezoelectric media, but they obtained only the distrib
tions of the fields. Lee et al.@11# presented the forces on the scre
dislocation and the energy release rate under the interaction
tween a semi-infinite crack and a screw dislocation in a piezoe
tric medium.
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In this work, to extend our previous work~@11#!, we provide the
interaction between a screw dislocation and a finite crack in
unbounded piezoelectric medium. A simple continuum model o
single screw dislocation around a finite crack in a hexagonal
ezoelectric crystal subjected to antiplane mechanical and in-p
electrical loads is considered. The screw dislocation has a
force and a line charge along its core. The analyses are carrie
in the framework of linear piezoelectric theory using conform
mapping and complex variable methods. The field variables
the forces acting on a piezoelectric screw dislocation aroun
finite crack are determined. Also, the effects of a screw disloca
and the loading conditions on the field intensity factors and ene
release rate are discussed. The solutions are given for a s
dislocation located in arbitrary position around a crack.

Mathematical Model
Let’s consider an unbounded piezoelectric medium containin

charged screw dislocation located at a point (x0 ,y0) around a
finite crack of length 2a, as shown in Fig. 1. The Cartesian coo
dinates (x,y,z) are set at the center of the crack for reference
screw dislocation core is assumed to be straight and infinitely l
in the z-direction, and subjected to a line force and a line char
It is known that in ionic crystals, dislocations can have charg
which can be transported along with the dislocation~@12#!. The
piezoelectric medium is considered to be transversely isotro
with hexagonal symmetry, which has an isotropic basal plane
xy-plane and a poling direction ofz-axis.

The piezoelectric boundary value problem is simplified in t
case of out-of-plane mechanical displacement and in-plane e
tric fields such that

ux5uy50, uz5w~x,y!, (1)

Ex5Ex~x,y!, Ey5Ey~x,y!, Ez50. (2)

In this case, the constitutive relations~@13#! become

szi~x,y!5c44gzi~x,y!2e15Ei~x,y!, (3)

Di~x,y!5e15gzi~x,y!1P11Ei~x,y!, (4)

whereszi(x,y), gzi(x,y), Ei(x,y), andDi(x,y) ( i 5x,y) are the
components of the stress, strain, electric field, and electric
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placement vectors, respectively. Also,c44 is the elastic modulus o
the piezoelectric material measured in a constant electric fielde15
is the piezoelectric constant,P11 is the dielectric permittivity
measured at a constant strain.

The electric field components are related to the electric po
tial f by

Ei~x,y!52f~x,y!, i ~ i 5x,y!. (5)

The antiplane governing equations are simplified to

c44¹
2w~x,y!1e15¹

2f~x,y!50, (6)

e15¹
2w~x,y!2P11¹

2f~x,y!50, (7)

where ¹25]2/]x21]2/]y2 is the two-dimensional Laplacian
operator.

The boundary conditions on the upper and the lower surface
the crack are to be free of surface traction and surface charge

szy~x,06!50, Dy~x,06!50 at uxu,a. (8)

The following far-field boundary conditions are considered:

Case 1: szy~x,6`!5t` and Dy~x,6`!5D` , (9)

Case 2: gzy~x,6`!5g` and Ey~x,6`!5E` , (10)

Case 3: szy~x,6`!5t` and Ey~x,6`!5E` , (11)

Case 4: gzy~x,6`!5g` and Dy~x,6`!5D` , (12)

where t` , g` , E` , and D` are uniform shear stress, uniform
shear strain, uniform electric field, and uniform electric displa
ment, respectively.

Solution Procedure
By solving the simultaneous equations, the governing Eqs.~6!

and ~7! give

¹2w~x,y!50, ¹2f~x,y!50. (13)

Fig. 1 A piezoelectric medium containing a screw dislocation
around a finite crack of length 2 a subjected to far-field me-
chanical and electrical loads
56 Õ Vol. 69, JANUARY 2002
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The solution to Eq.~13! can be found by lettingw andf be the
certain complex analytic functions such that

w~x,y!5W~Z!, f~x,y!5F~Z!, (14)

whereZ5x1 iy is a complex variable.
A crack on thex-axis is constructed using the following con

formal mapping function, which transforms the circleuzu51 in the
z-plane onto a finite crack of length 2a along the real axis in the
z-plane,

z5
1

a
@Z1AZ22a2#. (15)

By referring to the solution for an elastic material~@14–16#!, in
case of a screw dislocation subjected to a line force and a
charge, the complex potentials for displacement and electric
tential are obtained, respectively, as follows:

W~z!5A1F log~z2z0!1 logS z2
1

z0
D G

1 iA2F log~z2z0!2 logS 1

z
2z0D

1m log z2 log z1 log~2z0!G1 iA3F z2
1

z
G , (16)

F~z!5B1F log~z2z0!1 logS z2
1

z0
D G

1 iB2F log~z2z0!2 logS 1

z
2z0D

1m log z2 log z1 log~2z0!G1 iB3F z2
1

z
G , (17)

whereAj andBj ( j 51,2,3) are real constants, andm implies the
effect of an extra image dislocation considered to prevent
residual stress. If the real screw dislocation is emitted from
crack which is originally stress free,m should be zero. In contrast
m should be unity if the real screw dislocation originates el
where and comes near the crack which is originally stress
~@16#!. Therefore, the potential functions~16! and~17! have three
terms, respectively: the first corresponds to the line force
charge and its image, the second to the screw dislocation an
image, the third to the uniform external loads.

The strain, electric field, stress, and electric displacements
then be expressed in the forms
Transactions of the ASME
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g~x,y!5gzx~x,y!2 igzy~x,y!

5
dW~z!

dZ
5

dW~z!

dz

dz

dZ

5
1

AZ22a2 FA1S z

z2z0

1
zz0

zz021
D

1 iA2S z

z2z0

1
1

12zz0

1m21D 1 iA3S z1
1

z
D G ,

(18)

E~x,y!5Ex~x,y!2 iEy~x,y!

52
dF~z!

dZ
52

dF~z!

dz

dz

dZ

52
1

AZ22a2 FB1S z

z2z0

1
zz0

zz021
D

1 iB2S z

z2z0

1
1

12zz0

1m21D 1 iB3S z1
1

z
D G ,

(19)

s~x,y!5szx~x,y!2 iszy~x,y!

5c44

dW~z!

dZ
1e15

dF~z!

dZ

5
1

AZ22a2 F ~c44A11e15B1!S z

z2z0

1
zz0

zz021
D

1 i ~c44A21e15B2!S z

z2z0

1
1

12zz0

1m21D
1 i ~c44A31e15B3!S z1

1

z
D G , (20)

D~x,y!5Dx~x,y!2 iD y~x,y!

5e15

dW~z!

dZ
2e11

dF~z!

dZ

5
1

AZ22a2 F ~e15A12e11B1!S z

z2z0

1
zz0

zz021
D

1 i ~e15A22e11B2!S z

z2z0

1
1

12zz0

1m21D
1 i ~e15A32e11B3!S z1

1

z
D G . (21)

The six unknown constants,Aj andBj ( j 51,2,3) can be deter
mined by the theories of the force and charge balance condit
at the core, the displacement and electric potential jump co
tions across the slip plane, and the far-field loading condition
infinity ~@11#! in the forms
Journal of Applied Mechanics
ons
di-
at

A15
2e11pz1e15qz

2p~c44e111e15
2 !

, B152
e15pz1c44qz

2p~c44e111e15
2 !

, (22)

A252
bz

2p
, B252

Df

2p
, (23)

Case 1:

A352
a

2

e11t`1e15D`

c44e111e15
2 , B35

a

2

c44D`2e15t`

c44e111e15
2 , (24)

Case 2:

A352
a

2
g` , B35

a

2
E` (25)

Case 3:

A352
a

2

t`1e15E`

c44
, B35

a

2
E` (26)

Case 4:

A352
a

2
g` , B35

a

2

D`2e15g`

e11
(27)

wherebz , Df, pz , andqz are the Burgers vector, electric poten
tial jump, line force, and line charge, respectively.

Forces on a Screw Dislocation
The forces acting on a screw dislocation with a line force an

line charge can be obtained, using the relations introduced
Eshelby@17# and Pak@4#, as follows:

Fx5bzszy
T 1DfDy

T1pz
Sgzx

T 1qz
SEx

T ,
(28)

Fy52bzszx
T 2DfDx

T1pz
Sgzy

T 1qz
SEy

T ,

where the superscriptsS and T represent two conceptional do
mains, i.e.,S is the internal domain in which a screw dislocatio
exists, andT is the external domain in which a crack subjected
the mechanical and electrical loads exists. Therefore, Eq.~28! can
determine the forces acting on a screw dislocation in the domaS
due to the stress, strain, electric field, and electric displacem
generated by the crack and the external loads in the domainT. The
expressions for the field variablesgz j

T , sz j
T , Ei

T , andDi
T by the

crack and the external loads can be obtained by subtracting
fields generated by the dislocation subjected to a line force an
line charge in an unbounded piezoelectric medium from the fo
going field Eqs.~18!–~21!, and then by taking a limit atZ5Z0 .
Substituting the results into Eq.~28!, we obtain the forces acting
on a screw dislocation subjected to a line force and a line cha
in the presence of a finite crack as follows:
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Fx52@bz~c44A11e15B1!1Df~e15A12P11B1!#F2
1

Ar 1r 2

sinS u11u2

2 D2
r

2r 1r 2
H sin~u2u12u2!1cosu tanS u11u2

2 D J G
2@bz~c44A21e15B2!1Df~e15A22P11B2!#F m

Ar 1r 2

cosS u11u2

2 D2
r

2r 1r 2
$cos~u2u12u2!1cosu%G

2
2

a
@bz~c44A31e15B3!1Df~e15A32P11B3!#F r

Ar 1r 2

cosS u2
u11u2

2 D G
1~pzA12qzB1!F 1

Ar 1r 2

cosS u11u2

2 D2
r

2r 1r 2
$cos~u2u12u2!2cosu%G

2~pzA22qzB2!F2
m

Ar 1r 2

sinS u11u2

2 D2
r

2r 1r 2
H sin~u2u12u2!2cosu tanS u11u2

2 D J G
2

2

a
~pzA32qzB3!F r

Ar 1r 2

sinS u2
u11u2

2 D G , (29)

Fy52@bz~c44A11e15B1!1Df~e15A12P11B1!#F 1

Ar 1r 2

cosS u11u2

2 D2
r

2r 1r 2
$cos~u2u12u2!2cosu%G

1@bz~c44A21e15B2!1Df~e15A22P11B2!#F2
m

Ar 1r 2

sinS u11u2

2 D2
r

2r 1r 2
H sin~u2u12u2!2cosu tanS u11u2

2 D J G
1

2

a
@bz~c44A31e15B3!1Df~e15A32P11B3!#F r

Ar 1r 2

sinS u2
u11u2

2 D G
2~pzA12qzB1!F2

1

Ar 1r 2

sinS u11u2

2 D2
r

2r 1r 2
H sin~u2u12u2!1cosu tanS u11u2

2 D J G
2~pzA22qzB2!F m

Ar 1r 2

cosS u11u2

2 D2
r

2r 1r 2
$cos~u2u12u2!1cosu%G2

2

a
~pzA32qzB3!F r

Ar 1r 2

cosS u2
u11u2

2 D G . (30)
n

r
n

-
b

Equations~29! and ~30! give the solution for a screw dislocatio
located in arbitrary position around a crack.

Zhang and Li@16# presented thex-direction force on a screw
dislocation on thex-axis for an elastic material without any exte
nal load. If all the electrical quantities and the line and exter
loads vanish from Eq.~29!, it agrees with their solution.

Field Intensity Factors and Energy Release Rate

Extending the traditional concept of stress intensity factorKs to
other field variables, we can introduce the strain intensity fac
K«, the electric field intensity factorKE, and the electric displace
ment intensity factorKD. These field intensity factors can be o
tained by Eqs.~18!–~21!, in the case of a screw dislocation lo
cated in arbitrary position around a crack, in the forms

K«~6a!5 lim
Z→6a

A62p~Z7a!gzy~x,y!

5Ap

a FA1S ImAZ06a

Z07aD
2A2S m2ReAZ06a

Z07aD 72A3G , (31)
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KE~6a!5 lim
Z→6a

A62p~Z7a!Ey~x,y!

5Ap

a F2B1S ImAZ06a

Z07aD
1B2S m2ReAZ06a

Z07aD 72B3G , (32)

Ks~6a!5 lim
Z→6a

A62p~Z7a!szy~x,y!

5Ap

a F ~c44A11e15B1!S ImAZ06a

Z07aD
2~c44A21e15B2!S m2ReAZ06a

Z07aD
72~c44A31e15B3!G , (33)
Transactions of the ASME



a
y

e

i

KD~6a!5 lim
Z→6a

A62p~Z7a!Dy~x,y!

5Ap

a F ~e15A12P11B1!S ImAZ06a

Z07aD
2~e15A22P11B2!S m2ReAZ06a

Z07aD
72~e15A32P11B3!G , (34)

where

ReAZ01a

Z02a
5Ar 2

r 1
cosS u22u1

2 D ,

ImAZ01a

Z02a
5Ar 2

r 1
sinS u22u1

2 D , (35)

ReAZ02a

Z01a
5Ar 1

r 2
cosS u12u2

2 D ,

ImAZ02a

Z01a
5Ar 1

r 2
sinS u12u2

2 D . (36)

As shown in Eqs.~31!–~34!, the intensity factors are divided
into three terms: the first is by the line loads, the second by
dislocation, and the last by the external loads.

If only far-field external loading conditions are applied, Eq
~31!–~34! reduce to Pak’s result~@3#!. Also, if all the electrical
quantities, the line loads and the far-field loading conditions
eliminated from Eq.~33!, it is reduced to the solution of the purel
elastic case proposed by Zhang and Li@16#.

The energy release rateG for piezoelectric materials under th
antiplane shear case can be evaluated by the generalized
independentJ-integral ~@3#! in the form

J5G5
K«Ks2KEKD

2
. (37)

For a screw dislocation located in an arbitrary position aroun
crack, the energy release rates at both crack tips can be derive
substituting the field intensity factors into Eq.~37!, as follows:

G~6a!5
p

2a F ~c44A1
212e15A1B12P11B1

2!S ImAZ06a

Z07aD 2

22~c44A1A21e15A1B21e15A2B1

2P11B1B2!ImAZ06a

Z07a S m2ReAZ06a

Z07aD
74~c44A1A31e15A1B31e15B1A3

2P11B1B3!ImAZ06a

Z07a
1~c44A2

212e15A2B2

2P11B2
2!S m2ReAZ06a

Z07aD 2

64~c44A2A31e15A2B3

1e15B2A32P11B2B3!S m2ReAZ06a

Z07aD
14~c44A3

212e15A3B32P11B3
2!G . (38)

The energy release rates for four possible boundary condit
can be, respectively, determined by inserting Eqs.~22!–~27! into
Eq. ~38!.
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Fig. 2 Force on a screw dislocation, Fx versus dislocation
angle, u

Fig. 3 Force on a screw dislocation, Fy versus dislocation
angle, u

Table 1 Material properties of PZT-5H ceramic

Elastic modulus c44 2.331010 (N/m2)
Piezoelectric constant e15 17.0 ~C/m2!
Dielectric permittivity P11 150.4310210 (C/Vm)
Critical energy release rate Gcr 5.0

Table 2 Basic values for numerical example

Burgers vector bz 1.031029 (m)
Electric potential jump Df 1.0 ~V!
Line force pz 10 ~N/m!
Line charge qz 1.031028 (C/m)
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If the line force, line charge, and screw dislocation are elim
nated from Eq.~38!, it agrees with the solution for the purel
external loading case of Pak@3#.

Discussion
A lead zirconate titanate piezoceramic ceramic of PZT-5H

considered for the numerical analyses, and its material prope
are given in Table 1. Table 2 presents the values of the Bur
vector, electric potential jump, line force, and line charge app
for numerical examples. The effect of extra image dislocation
observed in the casem50 in which a real screw dislocation i
emitted from the crack. Because of the symmetry in geometry
loading, it is sufficient to consider only the case that a scr
dislocation exists near the right tip of a crack in the first quarte
the rectangular coordinate system of Fig. 1.

Figures 2 and 3 show the forces acting on a screw dislocatio
a function of the dislocation angleu. For all cases of loading
conditions, the force in thex-direction Fx increases with the in-
crease of angle forr /a50.5, but decreases forr /a52.0. In con-

Fig. 4 Force on a screw dislocation, Fx versus normalized dis-
tance, r Õa

Fig. 5 Force on a screw dislocation, Fy versus normalized dis-
tance, r Õa
60 Õ Vol. 69, JANUARY 2002
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trast, the force in they-direction Fy increases first and then de
creases with the increase of angle regardless of the norma
distancer /a.

Figures 4 and 5 show the forces acting on a screw dislocatio
a function of the normalized distancer /a. Fx increases with the
increase of normalized distance in 0,r /a,1.5 approximately in
spite of some exceptional trend of Case 2, and is little affected
the change of normalized distance forr /a.1.5.Fy increases up to
r /a51.0 and then decreases with the increase ofr /a.

Figures 6 and 7 show the forces acting on a screw dislocatio
a function of the electric displacementD` . In Case 1 subjected to
shear stress as the mechanical load,Fx andFy are proportional to
the electric displacement. However, in Case 4 subjected to s
strain, Fx is inversely proportional to the electric displaceme
Similar trends are obtained for Cases 2 and 3 under the ele
field E` .

Figure 8 shows the normalized energy release ratesG
(6a)/Gcr as a function of the dislocation angleu under Case 1.
The normalized energy release rate at the right crack tipG(a)/Gcr
shows the different results forr /a50.5 andr /a52.0, because of

Fig. 6 Force on a screw dislocation, Fx versus electric dis-
placement, D`

Fig. 7 Force on a screw dislocation, Fy versus electric dis-
placement, D`
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Fig. 8 Normalized energy release rate, G„Áa…ÕGcr versus dis-
location angle, u

Fig. 9 Normalized energy release rate, G„Áa…ÕGcr versus nor-
malized distance, r Õa

Fig. 10 Normalized energy release rate, G„Áa…ÕGcr versus
electric field, E`
Journal of Applied Mechanics
the effect of a screw dislocation. On the other hand,G
(2a)/Gcr at the left crack tip increases with the increase of an
for both r /a50.5 and 2.0.

Figure 9 shows the normalized energy release ratesG
(6a)/Gcr as a function of the normalized distancer /a under Case
1. Generally,G(a)/Gcr decreases with the increase ofr /a, and
G(2a)/Gcr increases.

Figure 10 shows the normalized energy release ratesG
(6a)/Gcr as a function of the electric fieldE` under Cases 2 and
3. In this figure, the normalized energy release rates at both c
tips have almost similar values in the overall viewpoint. Here, i
noted thatG(6a)/Gcr may have negative values under the sp
cial electric field. This means that crack growth in a piezoelec
material can be arrested by changing the direction and magni
of the electric field, because of the electromechanical coup
phenomenon.

The similar trends with Figs. 8–10 are obtained for other loa
ing cases.

In the case ofm51, where the real screw dislocation originat
elsewhere and comes near the crack, the results have the ex
same trend with the above figures in the case ofm50. The nu-
merical values ofm51 are larger than those ofm50 a little, but
the differences of values between two cases are too small to
tinguish in the overall viewpoint.

Conclusion
A theoretical analysis was performed for a screw dislocat

with a line force and a line charge around a finite crack in
hexagonal piezoelectric crystal under the far-field antiplane m
chanical and in-plane electrical loads. The field variables near
crack tip and the forces acting on the dislocation were obtained
a complex variable and a conformal mapping technique. The fi
intensity factors and energy release rates at both crack tips w
also determined as a function of the location of a screw dislo
tion subjected to line and external loads. The results were veri
by comparing with previous works. The numerical analyses p
sented the interaction between the defects by showing that
forces acting on the dislocation and the energy release rates
affected by the position of a screw dislocation and load
conditions.
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A Critical Reexamination of
Classical Metal Plasticity
P. W. Bridgman’s early work on flow and fracture in the presence of hydrostatic pres
showed no systematic effect on strain hardening. This experimental observation led
conclusions that yielding does not depend on hydrostatic stress and that the yi
material is incompressible. Classical plasticity theory was largely built on these obse
tions. New experiments and nonlinear finite element analyses of 2024-T351 alum
notched round bars has quantified the effect of hydrostatic tensile stresses on yie
Nonlinear finite element analyses using the von Mises (yielding is independent of h
static stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic st
yield functions was performed. The von Mises results overestimated experimental
displacement curves by 10–65 percent. The Drucker-Prager results essentially match
the experimental results. The only additional data requirement for the Drucker-Pra
yield function is the compressive yield strength.@DOI: 10.1115/1.1412239#
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Introduction

Bridgman and Classical Metal Plasticity. In his book,Stud-
ies in Large Plastic Flow and Fracture, P. W. Bridgman@1# sum-
marized his work on plastic flow and fracture in the presence
hydrostatic pressure. Bridgman’s research was motivated by
discovery that the ductility of mild steels increases greatly wh
exposed to hydrostatic pressures greater than 300,000 psi. D
World War II, the National Defense Research Committee a
later, the Watertown Arsenal, funded an extensive investigatio
the effect of hydrostatic pressure on the ductility of ballistic stee
Bridgman’s earlier work~@2#! showed no systematic effect o
pressure on strain hardening. However, his later work was c
acterized by more precise measurements which established a
nite effect of hydrostatic pressure on the strain hardening cu
of mild steel. His experiments were essentially tensile tests
smooth specimens in a pressure chamber.

Under the conditions of hydrostatic pressures up to 3100 M
~450,000 psi!, Bridgman found that a major effect of hydrostat
pressure was increased ductility. In other words, much lar
strains before fracture were obtained when hydrostatic pres
was applied as a boundary condition to a tensile test. Additiona
Bridgman found that the material volume in the gage section
not change for very large plastic strain changes. Therefore, a m
was assumed to have incompressible plastic strains. These
experimental observations about metals—no influence of hy
static pressure on yielding and incompressibility for plastic str
changes—are two of the basic tenets of classical metal plast

Bridgman’s tests were conducted on unnotched tensile
with pressures exceeding 100,000 psi. Such externally app
pressure levels are rarely seen in typical applications, lead
many researchers to assume that the effect of all hydros
stress—both tensile and compressive—is negligible. Generat
of material scientists and engineers have studied classical m
plasticity based on the postulate that yield is not affected by
drostatic stress. However, notched components loaded in ten
or bending can internally develop large hydrostatic stresses.

Generations of material scientists and engineers have stu

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March
2001; final revision, June 12, 2001. Associate Editor: M. Ortiz. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
of
the
en
ring
nd
of

ls.
f
ar-
defi-
ves
on

Pa
c
ger
ure
lly,
did
etal
two
ro-
in

city.
ars
lied
ing
atic
ions
etal

hy-
sion

died

classical metal plasticity based on Bridgman’s two observatio
Plasticity textbooks by Hill@3# in 1950 and Mendelson@4# in
1968 are examples of classical plasticity. Even modern treatm
on plasticity, such as Lubliner@5# in 1990 and Stouffer and Dam
@6# in 1996 assume that there is no hydrostatic pressure de
dence for yield and incompressibility as fundamental assumpt
for metal plasticity. These assumptions are also the basis for m
plasticity in commercial finite element programs. For example,
theory manual of ABAQUS@7# directs potential users to use
yield criterion for metals that has no dependence on hydrost
stress.

It is important to examine hydrostatic stress and incompre
ibility in mathematical terms. To simplify the discussion, assu
that the principal stresses are given bys1 , s2 , and s3 . The
principal stresses are the roots of the stress cubic

s32I 1s22I 2s2I 350, (1)

wheres is a principal stress andI 1 , I 2 , andI 3 are functions of the
stress state called the stress invariants. In terms of princ
stresses, the stress invariants are

I 15s11s21s3

I 252~s1s21s2s31s3s1!

I 35s1s2s3 . (2)

The hydrostatic or mean stresssm is defined assm5I 1/3 and the
hydrostatic pressurep is defined asp52sm .

Bridgman’s first observation that the hydrostatic pressure
no effect on the yield behavior of metals until very large hydr
static pressures led engineers to develop a plasticity theory
subtracts the mean stress from the principal stresses. The resu
stresses are called the deviatoric stressesS1 , S2 , andS3 , and are
written as

S15s12sm

S25s22sm

S35s32sm . (3)

The deviatoric stress invariants are the coefficientsJ1 , J2 , andJ3
of the cubic

S32J1S22J2S2J350 (4)

where the invariants are functions of the principal stresses and
mean stress

J150,
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J25
1

6
@~s12s2!21~s22s3!21~s32s1!2#,

J35~s12sm!~s22sm!~s32sm!. (5)

The deviatoric stress invariants can also be written in terms of
deviatoric stresses

J25
1

2
~S1

21S2
21S3

2!,

J35S1S2S3 . (6)

For classical metal plasticity, a yield function is a functionf
5 f (s1 ,s2 ,s3) such that whenf ,0 the material behavior is elas
tic. For f 50, the material behavior is plastic and yielding occu
Assuming that yield is independent of the hydrostatic stress le
to a yield functionf 5 f (J2 ,J3). The most commonly used yield
function, the von Mises yield function, assumes further that yie
ing is not a function ofJ3

f 5AJ22k, (7)

wherek is the yield strength in pure shear. For hardening mat
als,k is a function of plastic strain. The square root of 3J2 is the
von Mises or effective stress and can be written in terms of
principal stresses

seff5A3J25A1

2
@~s12s2!21~s22s3!21~s32s1!2#.

(8)

For f 50, Eq.~7! can be written asseff5s0, wheres0 is the yield
strength in pure tensions05)k.

Rewritting Eq. ~7! for f 50 in the form J25k2 leads to a
graphical interpretation of the yield function in the principal stre
space. For the von Mises yield function, the yield surface i
circular cylinder of radiusk whose axis is defined in the directio
of the hydrostatic stress. Any cross section taken perpendicul
the cylinder axis will be a circle of radiusk. A von Mises yield
surface is shown in Fig. 1.

The discussion thus far has focused on the initial yield surfa
where a material first starts to yield. Many materials exhibit str
hardening, a process where the yield surface changes sha
location or both as the material is plastically deformed. For ma
metals, isotropic hardening is an appropriate approximation.
sentially, isotropic hardening means that the yield surface expa
equally in all directions. For the von Mises yield function, th
radiusk of the yield surface grows larger.

Fig. 1 von Mises and Drucker-Prager yield surfaces
64 Õ Vol. 69, JANUARY 2002
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Isotropic hardening implies that the tensile and compress
yield behaviors are the same. While this is approximately true
some materials, it is not true in general. Some materials exh
different magnitudes of yield strength for tension than for co
pression. This effect is called the Bauschinger effect and beco
important whenever stresses are to be predicted after a revers
loading. Kinematic hardening is often used to describe mater
with a pronounced Bauschinger effect. For kinematic harden
the new yield surface is assumed to have the same radiusk as the
initial yield surface. However, the axis of the yield surface shi
in principal stress space.

Different metals have differing amounts of Bauschinger effe
Purely isotropic hardening represents an extreme of no Bau
inger effect. Kinematic hardening represents the other extre
However, a linear combination of the two models is useful
describing real materials. In practice, isotropic hardening is ea
to implement and is more often used.

The second basic tenet of classical metal plasticity is inco
pressibility. It was observed that volume change during pla
deformation is nearly elastic. In terms of principal strain incr
mentsd«1 , d«2 , and d«3 , the sum of the plastic strain incre
mentsd« i i

pl ~or plastic dilation rate! must be zero. Mathematically
this condition is

d« i i
pl5d«1

pl1d«2
pl1d«3

pl50. (9)

The relationship between plastic strain increments and the y
condition is given by an associated flow rule. Thus, a flow r
governs the postyield behavior of a material. The general form
an associated flow rule is

d« i
pl5dl

] f

]s i
, (10)

wheredl is a positive scalar. This type of flow rule is also calle
a normality flow rule because it assumes that the strain increm
is normal to the yield surface. Drucker and Prager@8# showed that
the plastic dilation rated« i i

pl can be summed from Eq.~10! to
obtain

d« i i
pl53dl

] f

]I 1
. (11)

Noting that the von Mises yield function is not a function ofI 1
leads to the result in Eq.~9!. In other words, the von Mises yield
function f does not depend on hydrostatic stress and the pla
dilation rated« i i

pl must be zero. Thus, the two observations
Bridgman and the two tenets of classical plasticity are clos
related.

Richmond and Yield Dependence on Hydrostatic Pressure.
Although classical metal plasticity has a great deal of inertia
engineering practice, the basic tenets were challenged in the 1
by the experiments of Richmond, Spitzig, and Sober~@9,10#!.
They studied the effects of hydrostatic pressure up to 1,100 M
~160 kpsi! on the yield strength of four steels~4330, 4310, ma-
raging steel, and HY80!. These pressure levels were significan
less than the maximum pressures used by Bridgman years ea

Richmond found that the yield strength was a linear function
hydrostatic pressure. For high-strength steels, Richmond fo
that a yield function identical to one proposed by Drucker a
Prager@8# for soils described the yielding process. The Druck
Prager yield function is

seff5s0~«pl!2aI1 , (12)

where a is a material constant~referred to in this paper as th
Drucker-Prager constant! related to the theoretical cohesiv
strength of the materialsc . The theoretical cohesive strength
the stress required to overcome cohesive forces between neig
ing atoms. The cohesive strength can be expressed as a fracti
Young’s modulusE. Dieter @11# gives the range of theoretica
Transactions of the ASME
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cohesive strength for metals asE/15 toE/4 with a typical value of
E/5.5. As with the von Mises yield function,s0 is the yield
strength for pure tension and is a function of plastic strain«pl .

Graphically,a can be interpreted as the slope of the graph
seff versusI 1 . The value ofseff for I 15Sy corresponds to the
typically reported yield strength for a tensile test. The value ofI 1
for seff50 corresponds to the theoretical cohesive strength of
material. For the 4330 steel shown in Fig. 2, the yield strength
pure tension was 1475 MPa and the cohesive strength was 59
MPa. ForE of 200,000 MPa, the theoretical cohesive strength w
approximately 0.3E.

Determining the theoretical cohesive strength is a difficult ta
therefore, another method is needed for determining the Druc
Prager constanta. If the tensile yield strengthSy and the compres-
sive yield strengthSyc are known,a can be calculated by

a5
Syc2Sy

Syc1Sy
. (13)

In terms of a yield surface, the Drucker-Prager yield function
a cone whose apex is at a hydrostatic stress equal to the coh
strength. This is shown schematically in Fig. 1. For small to m
erate amounts of hydrostatic stress, this cone would locally
approximated by a cylinder. For this situation, the von Mises yi
function would give comparable results to the Drucker-Pra
yield function. However, for high levels of hydrostatic stress, t

Fig. 2 Effective Stress seff versus I1 for 4330 steel „†9‡…
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Drucker-Prager yield function is preferable to von Mises. Ho
ever, the Drucker-Prager yield function is rarely used for me
plasticity.

The Drucker-Prager yield function in Eq.~12! can be written as

f 5AJ21aI 12k, (14)

wherea is a constant related to the Drucker-Prager constana.
The plastic dilation rate for the Drucker-Prager yield function
Eq. ~14! is no longer zero sincef depends onI 1 . Thus, the as-
sumption of incompressibility in classical metal plasticity is n
longer true andd« i i

pl53dla.

Research Program
A combined experimental and analytical research program

designed to study the hydrostatic tensile stress effects on the r
temperature yield behavior of 2024-T351 aluminum alloy~@12#!.
Two geometries were studied: a smooth tensile bar with a ro
cross section and a notched round bar~NRB!.

Experimental Program. Tensile tests on smooth, unnotche
round bars were conducted for each material with the resul
tensile strength and hardening properties~0.2 percent offset yield
strengthSy , ultimate strengthSul , and Ramberg-Osgood harden
ing exponentn! given in Table 1. The values for Young’s modulu
E and Poisson’s ration in Table 1 are typical handbook value
Compression tests were also conducted. The resulting comp
sive yield strengthSyc and the Drucker-Prager constanta are also
given in Table 1.

The NRB specimen details are shown in Fig. 3. The alumin
alloy specimens had a nominal radiusR of 0.25 in. and a neck
radiusr of 0.125 in., thusr /R50.5. All specimens had an notc

Table 1 Room temperature material properties for 2024-T351
aluminum alloy

E ~psi! 10.43106

n 0.33
Sy ~kpsi! 55.7
Sut ~kpsi! 69
n 15
Syc ~kpsi! 59.1
a 0.03
Fig. 3 Engineering drawing of the notched round bar „NRB… specimen
JANUARY 2002, Vol. 69 Õ 65
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flank angle of 45 deg. The notch root radiir chosen were 0.005
0.010, and 0.020 in. All notch root radiir had a tolerance of
60.001 in.

All tests were conducted on screw-driven universal testing m
chines in stroke control. An extensometer with a gage length
0.4 in. and a ten percent extension range was used in all N
tests. Load and gage displacement data were recorded withx-y
plotter and digitized afterward. No attempts were made to exp
mentally determine volume changes in the test specimens.

Analytical Program. Nonlinear finite element analyses we
used to model the load-displacement response of the 2024-T
aluminum specimens tested. The Sandia National Labora
computer program FASTQ@13# was used for preprocessing o
meshes and boundary conditions. The Q4 element type was
for all meshes. Axisymmetric models of notched round bars w
developed with FASTQ in three levels of mesh refinement in

Fig. 4 Schematic of axisymmetric model of a notched round
bar „NRB…
66 Õ Vol. 69, JANUARY 2002
a-
of

RB

eri-

e
351
ory
f
sed

ere
he

notch region. A schematic showing the region of the notch
round bar actually modeled is given in Fig. 4. A coarse me
typically had 250 elements in the notch region. Medium and fi
meshes typically had 500 and 1000 elements, respectively, in
notch region. An example of a coarse mesh is given in Fig. 5

A commercial finite element program, ABAQUS@7#, was used
for the finite element analyses and postprocessing of results. L
strain analysis and reduced integration options were used.
nonlinear material response was modeled using isotropic har
ing with a von Mises yield criterion, and again with a Drucke
Prager yield criterion. Associated flow rules were assumed
both yield criteria. The true stress versus plastic strain data f
the tensile test was used as input for the hardening curve.

Results and Conclusions
The experimental NRB load-displacementP-n curves for 2024-

T351 are shown in Fig. 6 for each notch root radius~@12#!. Mul-
tiple specimens were used for each notch root radius, but a si
representative load-displacement curve for each radius is plo
in Fig. 6. TheP-n records for all three values ofr seem to follow
a common curve with the smallestr failing at a lower load. It was

Fig. 5 Coarse mesh in the notch region
Fig. 6 Notched round bar „NRB… load-displacement results for all r for
2024-T351
Transactions of the ASME



Fig. 7 Notched round bar „NRB… load-displacement results „rÄ0.005 in. …
for 2024-T351

Fig. 8 Notched round bar „NRB… load-displacement results „rÄ0.010 in. … for 2024-T351

Fig. 9 Notched round bar „NRB… load-displacement results „rÄ0.020 in. …
for 2024-T351
Journal of Applied Mechanics JANUARY 2002, Vol. 69 Õ 67
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observed that all specimens failed before the load reached a
stability point predicted bydP50. No visible surface cracking
was observed during the tests.

The finite element results using a von Mises yield function a
a Drucker-Prager yield function are compared to the experime
results in Figs. 7–9. The von Mises yield function consisten
overpredicts the actual load-displacement response of the N
specimens. For the gage displacement at failure, the failure lo
predicted using the Drucker-Prager yield function essenti
matched the test data. The failure loads predicted using the
Mises yield function overestimated the experimental failure lo
by approximately ten percent. For the load at failure, the fail
displacements predicted using the Drucker-Prager yield func
essentially matched the test data. The failure displacements
dicted using the von Mises yield function overestimated the
perimental failure displacements by 20 to 65 percent. Theref
the Drucker-Prager yield function was consistently more accu
than the von Mises yield function.

The notched round bar is an axisymmetric geometry with
state of stress that is similar to plane strain. It develops a la
hydrostatic stress than a thin, flat double edge notched bar
state of plane stress. Thus, the errors reported for notched r
bars using the von Mises criterion for 2024-T351 are proba
upperbound errors. The differences between the von Mises
Drucker-Prager yield criteria may be much smaller for plane str
conditions.

In terms of stress concentration factors (kt), the notched round
bars hadkt ranging from 2.70~r of 0.020 in.! to 5.17~r of 0.005
in.! using equations developed by Neuber@14#. For milder notches
in notched round bars, the hydrostatic effect will be less p
nounced. However, notches in nominally plane stress geome
may still have hydrostatic effects because the local no
conditions are more like plane strain than the far-field plane st
condition.

There is a small Bauschinger effect or strength-differential~SD!
phenomenon observed in 2024-T351~Sy of 55.7 kpsi versusSyc
of 59.1 kpsi!. This effect appears to be adequately handled us
68 Õ Vol. 69, JANUARY 2002
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the Drucker-Prager yield function. The good agreement betw
experimental and numerical results indicates that isotropic h
ening, when coupled with the Drucker-Prager yield function, a
equately describes the strain hardening of 2024-T351.

In summary, the yield behavior of 2024-T351 aluminum all
is more accurately modeled using a yield function that include
hydrostatic stress term. The Drucker-Prager yield criterion w
shown to capture the hydrostatic tensile stress effects on yiel
without introducing complications and additional expense. T
only additional data requirement for the Drucker-Prager yi
function is the yield strength in compression.
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Vehicle Moving Along an Infinite
Beam With Random Surface
Irregularities on a Kelvin
Foundation
The paper deals with the stochastic analysis of a single-degree-of-freedom vehicle m
at a constant velocity along an infinite Bernoulli-Euler beam with surface irregulari
supported by a Kelvin foundation. Both the Bernoulli-Euler beam and the Kelvin fou
tion are assumed to be constant and deterministic. This also applies to the mass,
stiffness, and damping coefficient of the vehicle. At first the equations of motion fo
vehicle and beam are formulated in a coordinate system following the vehicle. The
quency response functions for the displacement of the vehicle and beam are dete
for harmonically varying surface irregularities. Next, the surface irregularities are m
eled as a random process. The variance response of the mass of the vehicle as wel
displacement variance of the beam under the oscillator are determined in terms o
autospectrum of the surface irregularities.@DOI: 10.1115/1.1427339#
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1 Introduction
In structural dynamics it is common practice to model a ro

runway, or railway track as a beam structure. Typically, a Kelv
type foundation is used to describe an underlying material,
traffic is modeled as moving loads. Many papers deal with a
terministic analysis of the problem. However, in reality the para
eters of the track structure as well as the loads are usually ran
variables. Thus a stochastic analysis of the problem has a sig
cant interest, not only from an academic but also from a pract
point of view.

Different aspects of uncertainties for the beam system and lo
or, possibly, a vehicle moving along the structure have been
amined in the literature. An analysis of a beam on a rand
Kelvin foundation due to a random excitation was performed
Sobczyk@1#. Frýba @2# gave an analytical solution to a rando
force moving at a constant velocity along a simply suppor
beam, and Zibdeh@3# analyzed the response of an axially loade
simply supported beam for a random, moving load with tim
varying velocity.

Iwankiewicz and S´niady @4# studied the behavior of a simpl
supported beam subjected to a stream of deterministic point fo
moving at constant and equal velocity but with random inter
rival time along the beam. Ricciardy@5# expanded the analysis t
loads with random amplitudes, whereas Zibdeh and Rackwitz@6#
studied the influence of loads with random velocities. Recen
Śniady et al.@7# performed a study of the beam response fo
loading process where the randomness of both the interar
times and loading amplitudes as well as the velocities was ta
into account.

Finite elements have been used for numerical stochastic an
sis of the beam response in a number of papers. Yoshimura e
@8# performed a finite element analysis of a vehicle moving alo
a simply supported beam with random surface irregularities

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov. 1
2000; final revision, June 12, 2001. Editor: N. C. Perkins. Discussion on the p
should be addressed to the Editor, Professor Lewis T. Wheeler, Department o
chanical Engineering, University of Houston, Houston, TX 77204-4792, and wil
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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varying cross section. Fry´ba et al.@9# examined the behavior of an
infinitely long Euler beam on a Kelvin foundation with random
varying parameters along the beam. The response due to a
stant load moving uniformly along the beam was analyzed us
stochastic finite elements in a moving frame of reference. Ch
and Liu @10# performed an analysis of a single-degree-of-freed
vehicle moving along a finite beam with random surface on
nonlinear deterministic Kelvin foundation using finite elemen
and Monte Carlo simulation.

Lombaert et al.@11# studied the behavior of a beam on an ela
tic half-space due to the load from a moving vehicle. The vehic
track interaction was disregarded based on the previous find
by Cebon@12#, who showed that for road traffic the interaction
insignificant. Mertrine and Vrouwenvelder@13# used a beam situ-
ated within a two-dimensional soillayer to represent a railw
tunnel. The tunnel and surface vibrations due to random load
on the beam was analyzed. Again vehicle-track interaction w
however, not taken into consideration. Furthermore the anal
was performed for a fixed reference system. Hence the resp
became nonstationary with time even though a stationary ran
loading process was considered.

For the purpose of analysing a railway track or a road on
subsoil, a Kelvin foundation with frequency-independent para
eters is unrealistic. A better model may be formulated by the
of a Kelvin foundation which is equivalent to a viscoelastic ha
space or a layer over a bedrock as proposed by Dieterman
Metrikine @14# and Metrikine and Popp@15#, respectively.

In the present paper the parameters of the foundation are
ertheless assumed to be frequency independent and determin
The surface of the beam is on the other hand irregular, descr
by a weakly homogeneous random process. An analytical me
will be presented for the analysis of a single-degree-of-freed
vehicle moving uniformly along the beam. The problem is form
lated in a local coordinate frame, which follows the vehicle, a
the interaction between the vehicle and the beam is taken
account. No Monte Carlo simulation is necessary since the sys
is assumed to be linear. A numerical example is given for surf
irregularities with an autospectrum which is typically used to d
scribe the irregularities of a road surface. The analysis shows
for certain configurations of the vehicle, the beam and the sup
~which may correspond to a real railway structure! the interaction
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per
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has a significant influence on the dynamic amplification of
displacement response of both the vehicle mass and the bea

2 Theory
A vehicle modeled as a single-degree-of-freedom system w

massm0 , spring stiffnessk0 and viscous dampingc0 is moving
uniformly in permanent contact along the surface of a Bernou
Euler beam at the velocityv thus having the along beam positio
x5vt at time t. The beam has the bending stiffnessEI and the
massm per unit length and rests on a Kelvin foundation wi
stiffnessk and viscous dampingg per unit length of the beam
The material properties of the vehicle and beam are homogen
and constant in time, and the beam axis is supposed to for
straight line in the state of static equilibrium. However, the surfa
of the beam has the irregularitiesy5y(x) measured from the
mean level of the surface perpendicular to the beam axis. A
natively, y5y(x) may be used to describe wheel irregularities
a combination of wheel and surface irregularities~see Fig. 1!.

A local coordinate system following the vehicle is introduc
by the transformationx5x2vt. Due to convection the partia
derivative with respect to time in the moving frame of referen
includes a spatial derivative,

]

]tU
x

5
]

]tU
x

1v
]

]x
. (1)

Let z5z(t) be the vertical displacement of the point mass a
let u5u(x,t) denote the vertical displacement of the beam in
local coordinate system, both relative to the respective position
the state of static equilibrium for no surface irregularity. Putti
u̇5]u/]tux and making use of the fact thaty(x)5y(x1vt), the
equation of motion may in turn be written

m0

d2z

dt2
1c0S dz

dt
2u̇~0,t !2vy8~vt ! D1k0~z2u~0,t !2y~vt !!50,

(2)

where the prime denotes differentiation with respect to the ar
ment. It is assumed that the mean levelym(x) of the beam surface
does not change along the beam. However, ifym(x) has a deter-
ministic variation withx, the linearity of the problem implies tha
the total response may be expressed as a sum of the respons
to the irregularitiesym(x) andy(x).

For the beam the equation of motion in the moving coordin
frame may be written

EI
]4u

]x4 1mS ü22v
]u̇

]x
1v2

]2u

]x2 D1gS u̇2v
]u

]x D1ku

5 f ~ t !d~x!. (3)

Here, ü5]2u/]t2ux is the local acceleration, whereasf (t) is the
moving load andd~x! is the delta function. In the present case t
force on the beam originates from the single-degree-of-freed

Fig. 1 Single-degree-of-freedom vehicle moving along a
Bernoulli-Euler beam with irregular surface on a Kelvin founda-
tion
70 Õ Vol. 69, JANUARY 2002
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vehicle. By d’Alembert’s principlef (t)52m0d2z/dt2. It should
be noticed that besides this dynamic load the vehicle will a
provide the deterministic static loadf s52m0g, whereg is the
gravitational acceleration. In what follows, the static load is d
regarded and only the stochastic dynamic response is consid
A determination of the total response could easily be carried
by application of the principle of linear superposition.

2.1 Harmonic Surface Irregularities. Harmonically vary-
ing surface irregularities with wavelengthL are given by

y~x!5Yeikx, (4)

where Y is the amplitude,i 5A21 is the imaginary unit, and
k52p/L is the wave number. Inserting Eq.~4! with x5vt into
Eq. ~2!, the equation of motion for the vehicle reads

m0

d2z

dt2
1c0S dz

dt
2u̇~0,t !2 ivYeivtD1k0~z2u~0,t !2Yeivt!50,

(5)

in which v5kv denotes the apparent circular frequency of t
surface irregularities as seen from the vehicle in the local coo
nate system.

Solutions to Eqs.~5! and~3! with f (t)52m0d2z/dt2 are on the
form

z~ t !5Z~v!eivt, uj~x,t !5U j~x,v!eivt, j 51,2,3,4, (6)

where Z(v) and U j (x,v)5m0v2Z(v)Ũ j (v)eiK jx are the ve-
hicle amplitude and the amplitude functions for the four bend
wave components in the beam, respectively. HereŨ j (v) are the
amplitudes atx50 for harmonic excitation with unit amplitude
i.e., f (t)5eivt, and the wave numbersK j5K j (v) correspond to
the roots of the characteristic polynomial,

K j
42

mv2

EI
K j

22
igv22mvv

EI
K j1

k2mv21 igv

EI
50. (7)

For v5g50 a cutoff frequency, vc5Ak/m, exists. When
v,vc , no travelling waves without attenuation will propagate

Physically, waves with increasing amplitudes in the far-field a
invalid. Furthermore only travelling waves with no attenuati
and a group velocity away from the force can exist. The requ
ments may be formulated as

J~K j !x>0, R~K j !x<0 for J~K j !50, (8)

respectively. HereR(K j ) and J(K j ) denote the real and imagi
nary part of the wave number, respectively. It may be shown
only two of the solutions to Eq.~7! fulfill the requirements given
in Eq. ~8! on either side of the load; see, e.g.,@16#. In what follows
the subscriptsj 51,2 will be used for the components existing
x<0 ~i.e., behind and under the load!, whereas the component
existing in front of the load have subscriptsj 53,4. Thus the am-
plitude U(x,v) of the beam displacement field becomes

U~x,v!5m0v2Z~v!(
j 5 j 1

j 2

Ũ j~v!eiK jx,

H $ j 1 , j 2%5$1,2% for x<0
$ j 1 , j 2%5$3,4% for x.0. (9)

Alternatively the wave componentsj 53 and j 54 could be used
for x50. A summation of all four components is inappropria
since this would imply a discontinuity of the displacement fie
under the load.

At x50 the displacement, rotation, and bending moment of
beam must be continuous functions ofx. A unit amplitude load
inquires a jump of 1 in the shear force at the point where the l
is applied. Hence, with the positive directions defined in Fig
the amplitudesŨ j (v) are obtained by the following system o
equations:
Transactions of the ASME
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and
F 1 1 21 21

iK 1 iK 2 2 iK 3 2 iK 4

~ iK 1!2 ~ iK 2!2 2~ iK 3!2 2~ iK 4!2

~ iK 1!3 ~ iK 2!3 2~ iK 3!3 2~ iK 4!3

GF Ũ1

Ũ2

Ũ3

Ũ4

G5F 0

0

0

21/EI

G .

(10)

Insertion of the wave field given in Eq.~9! into Eq.~5! leads to
the following solution for the amplitude of the single-degree-
freedom mass,Z(v):

Z~v!5HZY~v!Y, HZY~v!5~ ivc01k0!/D~v!, (11)

where the denominator,D(v), is given by

D~v!5~2v2m01 ivc01k0!2~ iv3m0c01v2m0k0!(
j 51

2

Ũ j~v!.

(12)

Analogously Eq.~9! for the beam displacement may be rewritt
as

U~x,v!5HUY~x,v!Y, HUY~x,v!5HUZ~x,v!HZY~v!.
(13)

Here the frequency response functionHUZ(x,v) is given by

HUZ~x,v!5m0v2(
j 5 j 1

j 2

Ũ j~v!eiK jx, H $ j 1 , j 2%5$1,2% for x<0
$ j 1 , j 2%5$3,4% for x.0.

(14)

2.2 Random Surface Irregularities. In practice the surface
irregularities are not harmonically varying, but will instead
described by a weakly homogeneous stochastic process. Give
one-sided autospectral densitySY(v) for the surface irregularities
the one-sided autospectral densitySZ(v) for the displacement of
the single-degree-of-freedom vehicle can be found. Also, the o
sided cross-spectral densitySUU(x1 ,x2 ,v) for the beam displace
ment at two pointsx1 andx2 on the beam axis can be calculate
Thus, see, e.g., Lin@17#,

SZ~v!5uHZY~v!u2SY~v!, (15)

SUU~x1 ,x2 ,v!5HUY* ~x1 ,v!HUY~x2 ,v!SY~v!, (16)

where HZY(v) and HUY(x,v) are defined previously and
HUY* (x1 ,v) is the complex conjugate ofHUY(x1 ,v). The prin-
ciple of superposition is valid, because the governing equat
are all linear.

From the Wiener-Khintchine relation the auto-covariance fu
tion kZZ(t) for the vehicle displacement and the cross-covaria
function kUU(x1 ,x2 ,t) for the beam displacement may be e
pressed as

kZZ~t!5E
0

`

cos~vt!SZ~v!dv, (17)

kUU~x1 ,x2 ,t!52E
0

`

~cos~vt!SUU
R 2sin~vt!SUU

J !dv,

(18)

respectively, whereSUU
R andSUU

J are the real and imaginary par
of SUU(x1 ,x2 ,v), respectively.

2.3 Nondimensional Parameter Description. The dynamic
response of the vehicle and beam is self-induced, i.e., no exte
load acts on the system. Therefore, only the relative size of
system parameters is of importance. Dimension analysis an
further study of the system equations would imply that the follo
ing nondimensional identities govern the problem:

V05
v0

v r
, Vc5

vc

v0
, M05

m0

mLc
, n5

v
vc

, (19)
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Here v05Ak0 /m0 is the circular eigenfrequency of the single
degree-of-freedom vehicle, andv r5vkr is a characteristic circu-
lar frequency of the surface roughness,kr being the corresponding
characteristic wave number.Lc is a characteristic wavelength fo
bending waves in the beam, andvc is the corresponding charac
teristic phase velocity. They are defined, respectively, as

Lc5
2pvc

vc
, vc5A4 4EIk

m2 . (21)

It should be noticed thatn serves as a kind of Mach numbe
putting the vehicle velocity relative to the velocity of the bendi
waves.

3 Numerical Examples
Irregularities of a road surface are often modeled as a wea

homogeneous process$Y(x),xPR% having the one-sided au
tospectral density

SY~k!5H 0, k¹@k1 ,k2#

sY
2

k1k2

k22k1

1

k2 , kP@k1 ,k2#
, (22)

wheresY is the standard deviation of the surface irregularitie
The spectrum has a slope of 1:2 in double-logarithmic mapp
and is valid for wavelengths betweenL250.1 m andL1510 m
corresponding tok152p/10 m21 andk252p/0.1 m21. The char-
acteristic wave number for the surface roughness is chose
kr5Ak1k2, which lies in the middle of the@k1 ,k2# interval on a
logarithmic scale.

A transformation from wavenumber domain to frequency d
main is obtained by substitutingk5v/v into Eq. ~22!,

SY~v!5H 0, v¹@v1 ,v2#

sY
2

v1v2

v22v1

v
v2 , vP@v1 ,v2#

, (23)

wherev15k1v and v25k2v. SubsequentlySZ(v) is found by
insertion into Eq.~15!.

In the following an analysis will be carried out for the varian
of the single-degree-of-freedom mass displacement respo
sZ

25kZZ(0), and thevariance of the beam displacement respon
directly under the vehicle,sU

2 5kUU(0,0,0). Due to the linearity
of the problemsZ

2 and sU
2 are proportional tosY

2. Hence, it is
convenient to describe the respective variances by thedynamic
variance amplification factors,

sZ5
sZ

2

sY
2 , sU5

sU
2

sY
2 . (24)

A beam with the mass per unit lengthm5100 kg/m is consid-
ered. The vehicle has the circular eigenfrequencyv052p s21 and
the damping ratioz051, which are assumed to be typical value
The analysis is performed for different sizes of the point ma
m05100, 1000, 10,000 kg, and the characteristic wavelength
bending waves and the circular cutoff frequency are both var
The valuesLc51, 10, 100 m andVc50.1, 1, 10 are used. I
should be noticed that with the definitions in Eqs.~19! to ~21! an
increase ofVc will imply an increase in bothk and EI for con-
stantLc , whereas an increase inLc only leads to an increase inEI
for constantVc .

Figures 2–4 show the dynamic amplification factorssZ andsU
as functions of the vehicle velocity in thevP@1 m/s,100 m/s# in-
terval. Further to the results obtained using the indicated the
~the continuouscurves!, reference results~the dashedcurves! are
shown for a situation where the interaction between the beam
JANUARY 2002, Vol. 69 Õ 71
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Fig. 2 Dynamic amplification of vehicle mass response „ … and beam response „ … at
xÄ0. The dashed lines indicate the response when interaction between vehicle and beam is
neglected. m 0Ä100 kg, v0Ä2p sÀ1, mÄ100 kg Õm, z0Ä1 and zcÄ0.1.
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the vehicle is not taken into consideration, i.e., the vehicle d
not feel the displacements of the beam, but only the surf
roughness. In this case the denominatorD(v)5(2v2m01 ivc0
1k0) is used instead of the original denominator, Eq.~12!.

In the reference case with no interaction~the dashed curves! the
response of the point mass is seen to decrease for increasing
ues of v beyond 10 m/s. This could be expected sinceV051
when v51 m/s andv0 moves to the bottom of the frequenc
range for the autospectra whenv510 m/s. For velocities of more
than 10 m/s,v0 lies outside the frequency range.

When interaction of the vehicle and beam is taken into acco
the response of both the single-degree-of-freedom mass an
beam is almost unchanged, if the spring stiffness of the Ke
foundation and the bending stiffness of the beam is sufficie
high. This also applies to the single-degree-of-freedom mass
sponse when the stiffness of the beam and support is very low
this case the beam response is, however, not estimated correc
the reference calculation at low velocities. As seen from the
ures the deviation grows with an increase ofm0 .

For some configurations of the beam and support other than
aforementioned there is a general amplification of the respons
both the single-degree-of-freedom mass and the beam, as lo
the velocity of the vehicle lies beneath a certain value. The a
plification tends to become stronger when the single-degree
freedom mass is increasing and the velocity, where the amplifi
tion drops off, at the same time becomes smaller. However
increase of the bending stiffness of the beam leads to an incr
of the velocity where the dropoff appears. Hence, the drop
velocity for m051000 kg, Vc51 and Lc510 m is almost the
same as the dropoff velocity form0510,000 kg, Vc51 and
Lc5100 m.

Another interesting feature of the response is that for cer
combinations of beam configurations, point mass and veloci
the beam response, and in some cases also the single-degr
freedom mass response, is amplified drastically. Hence, value
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both amplification factors as high as 1000 are found. The m
dramatic reinforcement of the response takes place
m051000 kg,Vc51 andLc510 m.

A real road structure is typically very stiff in proportion to th
suspension of the vehicle, i.e.,Vc andLc are very large. Further
analyses show that in such cases the local peaks in the ampl
tion curves will move to higher velocities and the interaction b
tween the vehicle and the beam structure becomes less impo
as indicated by Cebon@12#. However, for heavy freight trains o
high-speed passenger trains running on soft soil layers or ru
damping devices in metro tunnels, a low stiffness of the beam
support relative to the stiffness of the vehicle may be expec
Hence, the interaction may be of significant importance in
analysis of such problems.

For z051, i.e., critical damping of the vehicle, Figs. 2–4 sho
that in most cases there is no amplification of the single-deg
of-freedom mass displacement response beyond the displacem
directly corresponding to the surface irregularities. Also it may
noticed that an amplification of the single-degree-of-freed
mass response will only take place in conjunction with an am
fication of the beam displacement, though an amplification of
beam response may not necessarily lead to an amplification o
single-degree-of-freedom mass response.

To test whether the same feature applies when the vehicle is
critically damped, the system response has been analyzed for
ous combinations of the damping ratiosz0 andzc . The remaining
parameters of the system are kept constant with the follow
parameters being used:

m051000 kg, v052p s21, m5100 kg/m, Vc510, Lc510 m.
(25)

The results of the analysis are illustrated in Fig. 5. As it cou
be expected, the dynamic amplification of the single-degree
freedom mass displacement increases significantly when
damping ratioz0 is decreased. There is almost a one-to-one c
Transactions of the ASME
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Fig. 3 Dynamic amplification of vehicle mass response „ … and beam response „ … at
xÄ0. The dashed lines indicate the response when interaction between vehicle and beam is
neglected. m 0Ä1000 kg, v0Ä2p sÀ1, mÄ100 kg Õm, z0Ä1 and zcÄ0.1.

Fig. 4 Dynamic amplification of vehicle mass response „ … and beam response „ … at
xÄ0. The dashed lines indicate the response when interaction between vehicle and beam is
neglected. m 0Ä10,000 kg, v0Ä2p sÀ1, mÄ100 kg Õm, z0Ä1 and zcÄ0.1.
d Mechanics JANUARY 2002, Vol. 69 Õ 73
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Fig. 5 Dynamic amplification of vehicle mass response „ … and beam response „ … at
xÄ0. The dashed lines indicate the response when interaction between vehicle and beam is
neglected. m 0Ä1000 kg, v0Ä2p sÀ1, mÄ100 kg Õm, VcÄ10 and L cÄ10 m.
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respondence between 1/z0 and sZ for velocities close to 10 m/s
Here the eigenfrequencyvc lies near the lower bound of the fre
quency interval for the autospectra where the major part of
variation in the surface irregularities is present.

However, the curves in Fig. 5 indicate that for velocities beyo
10 m/s an increase of the damping ratio of the vehicle is a dis
vantage, especially when the damping in the support is relativ
low. Thus, some quite significant peaks arise for the combina
z051, zc50.01 in the intervalv'40 to 60 m/s. At these veloci
ties the eigenfrequency of the vehicle lies way below the bott
frequency of the autospectrum for the surface roughness. He
the origin of the peaks must be resonance in the beam.
zc50.01 a peak is still present, though it is less pronounc
However, when both the vehicle and the beam are critica
damped, the peaks have vanished. Here the interaction ha
influence on the displacement response of neither the sin
degree-of-freedom mass nor the beam for the entire velocity ra
considered~the dashed and continuous curves coincide!.

In practice vehicles are~close to! being critically damped.
However, depending on the material of the underlying structur
seems likely thatzc will be of the order 0.01 to 0.1. This mean
that a strong displacement amplification will actually occur a
certain critical velocity of the vehicle.

4 Conclusions
The response of a single-degree-of-freedom vehicle mov

uniformly along an Euler beam on a viscoelastic foundation
Kelvin type has been investigated. Only the stochastic part of
response due to random surface irregularities has been consid

The analysis shows that when the beam and support are
tively stiff compared to the suspension of the vehicle the influe
of interaction between the beam and vehicle is insignificant. T
is in accordance with the assumptions made in@11#. Also, when
the beam and support are relatively soft, the vehicle response
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unchanged from the situation where interaction is neglected.
beam response is, however, estimated incorrectly in this situa
when interaction is not taken into account.

For the given autospectrum of the surface roughness, some
figurations of the beam and support along with the velocity of
vehicle may prove critical. Thus, even for a vehicle, which
critically damped, a significant amplification of the order 103 to
the surface roughness may take place. Resonance of the vehi
an isolated system is not the main problem in this case, wh
indicates that for a vehicle moving on a structure, which m
interact with the vehicle, the mechanical design of both vehi
and structure is of great importance. Actually, it has been foun
the analysis that a reduction of the damping in the vehicle m
prove beneficial at high velocities. Nevertheless, when the da
ing of the vehicle is reduced, the dynamic amplification of t
response is increased drastically at velocities where the eige
quency of the single-degree-of-freedom system lies within the
quency range of the autospectrum for the surface roughness.

The analysis indicates that the interaction between the veh
and beam structure should not be neglected in the analysis of,
heavy freight trains running on a railway track structure with
low bending stiffness and a low cutoff frequency. Also it shou
be noticed that neglecting the interaction in the derived analyt
method does not make the calculation of the displacement am
fications any simpler. Anyway, the terms of the beam displa
ment that influence the vehicle mass displacement must be fo
if the beam displacement under the vehicle should be determi

An analysis of a realistic vehicle requires a model with mo
degrees-of-freedom and contact points along the beam. For
single-degree-of-freedom vehicle it is relatively simple to put fo
ward the frequency response matrix for both the vehicle itself
for the beam. Already when a two-degree-of-freedom vehicle
contact with the beam at two separate points along the structu
considered, however, the interaction of the vehicle and the un
Transactions of the ASME
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lying structure becomes far more complicated. Hence, an ana
cal approach is inconvenient. For a vehicle with even m
degrees-of-freedom only a numerical solution may be found. D
crete frequency response functions may be determined using,
a finite element scheme. A finite element formulation of the pr
lem with a moving load on an infinite Euler beam-Kelvin found
tion system in the moving frame of reference has previously b
suggested by Andersen et al.@16#.
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Intersonic Crack Propagation—
Part II: Suddenly Stopping Crack
In Part I of this series, we have obtained the fundamental solution for a mode II inters
crack which involves a crack moving uniformly at a velocity between the shear
longitudinal wave speeds while subjected to a pair of concentrated forces sudden
pearing at the crack tip and subsequently acting on the crack faces. The fundam
solution can be used to generate solutions for intersonic crack propagation under
trary initial equilibrium fields. In this paper, Part II of this series, we study a mode
crack suddenly stopping after propagating intersonically for a short time. The solutio
obtained by superposing the fundamental solution and the auxiliary problem of a s
crack emitting dynamic dislocations such that the relative crack face displacement i
fundamental solution is negated ahead of where the crack tip has stopped. We find
after the crack stops moving, the stress intensity factor rapidly rises to a finite value
then starts to change gradually toward the equilibrium value for a static crack. A m
interesting feature is that the static value of stress intensity is reached neither inst
neously like a suddenly stopping subsonic crack nor asymptotically like a suddenly
ping edge dislocation. Rather, the dynamic stress intensity factor changes continuou
the shear and Rayleigh waves catch up with the stopped crack tip from behind
proaches negative infinity when the Rayleigh wave arrives, and then suddenly assum
equilibrium static value when all the waves have passed by. This study is an impo
step toward the study of intersonic crack propagation with arbitrary, nonunifo
velocities. @DOI: 10.1115/1.1410936#
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1 Introduction
Freund@1# used the Wiener-Hopf method to obtain the fund

mental solution for mode I dynamic crack propagation. A sem
infinite crack in an infinite solid was subjected to a pair of co
centrate normal forces suddenly applied at the crack tip at t
t50, and at the same instant the crack tip started to propaga
a constant velocityv. This fundamental solution can be used
construct the general solution for dynamic crack propagation s
ject to arbitrary initial equilibrium field~@2#!. More importantly, it
can also be used to obtain the general solution for crack grow
nonuniform crack-tip speed~@3#!. This is because that, once th
crack tip suddenly stops propagating, the dynamic stress inten
factor instantaneously reaches its static counterpart for the s
geometry and loading~@3#!. A more general conclusion has bee
established~e.g., @2,4#! that the stress intensity factor around
dynamically propagating crack tip is simply its static counterp
~for the same crack length! multiplied by a universal functionk of
the crack tip velocity,

K~a,ȧ!5k~ ȧ!K~a,0!, (1)

wherea is the crack length,ȧ is the crack-tip velocity, the univer
sal function k is approximately given byk(v)5(12v/cR)/
A12v/cl , andcR andcl are the Rayleigh and longitudinal wav

speeds, respectively.
The corresponding mode II analysis was reported by Fos

and Freund@5#, and the approach was also generalized to ot
cases of loading~@6–9#!. It should be pointed out that these anal
ses hold strictly for sub-Rayleigh crack growth, i.e., the crack

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 1
2000; final revision, May 30, 2001. Associate Editor: L. T. Wheeler. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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velocity v is less than the Rayleigh wave speedcR . Using a
different analytic method, Willis@10,11# obtained the solution for
nonuniform crack growth in the entire subsonic range, i.e.,
crack-tip velocity can exceed the Rayleigh wave speed but
than the shear wave speedcs .

The present study is motivated by recent experiments on in
sonic crack propagation by Rosakis et al.@12,13# who investi-
gated shear dominated crack growth along weak planes in a b
polyester resin under far-field asymmetrical loading. They o
served that the crack-tip velocity not only exceeded the Rayle
and shear wave speeds,cR andcs , but also approached the lon
gitudinal wave speed,cl . Evidence of shear crack propagation
excess of the shear wave speed has also been provided from
servations of shallow crustal earthquakes~@14–17#!. There are
also analytical and numerical studies on various aspects of s
intersonic crack propagation in homogeneous solids with w
planes, such as the stress singularity and stability regime in
tropic solids ~@18–21#! and orthotropic solids~@22,23#!; crack
propagation at a constant velocity subjected to uniform shea
crack faces~@24#!; radiation-free crack-tip velocity and relation
with intersonic dislocations~@25#!; slip-weakening or cohesive
models~@26–29#! and atomic simulations~@30,31#! of intersonic
fracture.

The aim of this paper is to extend Freund’s analysis~@1,3#! for
subsonic crack growth (v,cs) to intersonic crack propagation
(cs,v,cl). The fundamental solution for intersonic shear cra
propagation was obtained in Part I of this paper~@32#!. A pair of
concentrate shear forces was suddenly applied at the crack t
time t50, and at the same instant the crack tip started to pro
gate at a velocityv between the shear and longitudinal wa
speeds,cs andcl . It was established that only at a single crack-
velocity of v5&cs the crack tip has the square-root singulari
and the crack-tip energy release rate at this velocity is slightly
than one quarter of its counterpart for a stationary crack tip~for
the same crack length!. The present study focuses on an interso
cally propagating shear crack tip that suddenly stops moving. T
study provides answers to two important but interrelated quest
on intersonic crack propagation. First, once the crack tip st
moving, will the crack-tip stress intensity factor instantaneou
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reach its static counterpart as in subsonic crack growth~@1,3#!?
Second, the solution for nonuniform subsonic crack growth can
obtained from that for uniform crack growth~@1,3#!. Does this
conclusion hold for intersonic crack propagation? Unfortunat
the answer to both questions are negative, as shown in this p

2 Suddenly Stopping Crack
The fundamental solution is given in Part I of this paper~@32#!

for an infinite linear elastic solid containing a semi-infinite cra
on the negativex axis. For timet<0, the solid is stress free and a
rest everywhere, and the crack tip is at the origin~0,0!. At time
t50, the crack tip begins to move intersonically at a const
velocity v (cs,v,cl) in the positive x-direction. As the tip
moves away, a pair of concentrated shear forces~in the
x-direction! of constant magnitudet* is left at the origin. In the
present study, the loading, geometry and crack-tip motion are
same as those in the fundamental solution~@32#!, except that the
crack tip suddenly stops moving at timet5t* after propagating a
distance ofvt* . This suddenly stopping crack problem can
decomposed into the following two problems;~i! the fundamental
solution that persists fort.t* , i.e., crack tip continues to propa
gate after timet* ; and ~ii ! the negation of the sliding displace
ment across the crack face in the fundamental solution forvt.x
.vt* by emitting dislocations from the crack tip alongx.0,y
50 in just the appropriate sequence. Freund@33# also used the
moving dislocation solution to determine the dynamic stress
tensity factor due to normal impact loading on the crack face

2.1 Solution for a Moving Dislocation. An infinite linear
elastic solid contains a semi-infinite crack on the negativex-axis.
For time t<0, the solid is stress free and at rest everywhere,
the crack tip is at the origin~0,0!. An edge dislocation is emitted
from the crack tip at timet50, and propagates along the positiv
x-axis at a constant velocityw less than the longitudinal wav
speedcl ~therefore including both subsonic and intersonic
gimes!. Freund@2,33# used the Wiener-Hopf method to solve th
above problem with an edge dislocation climbing in t
x-direction, leading to a mode I crack tip. The solution for an ed
dislocation gliding in thex-direction, corresponding to a mode
crack tip, is provided in this section to pave the way for analyz
a suddenly stopping crack in the following sections.

The boundary conditions can be written as

syy~x,y50,t !50,

sxy~x,0,y50,t !50, (2)

ux~x.0,y50,t !5bH~wt2x!,

where b is the Burgers vector, andH is the unit step function.
Since the analysis is nearly identical to that for mode I~@2,33#!,
we only provide the final solution of the crack-tip stress intens
factor kII ,

kII 5bk0~ t,w!, (3)

where the linear dependence on the Burgers vectorb is made
explicit, andk0 is a function of timet and dislocation velocityw
given by

k0~ t,w!522mS 12
cs

2

cl
2D 11

w

cR

A11
w

cs

s02S 2
1

w
D A 2

pwt
, (4)

m is the shear modulus, and
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s02S 2
1

wD5expF 2
1

pE1/cl

1/cs

tan21

3F 4r 2AS r 22
1

cl
2D S 1

cs
22r 2D

S 2r 22
1

cs
2D 2 G dr

r 1
1

w

G . (5)

2.2 Crack-Face Sliding Displacement in the Fundamental
Solution. It is established in Part I of this paper~@32#! that the
sliding displacement across the crack face in the fundamenta
lution, d5u1(x,vt,y501)2u1(x,vt,y502), depends on
time t and coordinatex only through their ratiox/t,

d~x,vt,t !5dS x

t D , (6)

wherev is the crack-tip velocity, andd is given by

d~w!5
2

p
PVE

1/~cl1v !

1/~v2w!

Im@U2~h!#dhH~w1cl !. (7)

HereH is the unit step function;PV stands for the Cauchy prin
cipal value integral because Im@U2(h)# has simple poles at 1/(v
2cR) and 1/(v1cR) and a double pole at 1/v, and

Im@U2~h!#5
Aclv

cs
2

t*

m

s1~h!

s1S 1

v D ~12vh!A~cl2v !h11
Fn~h!

Fd~h!
,

(8)

t* is the concentrated shear force on the crack face in the fun
mental solution,m is the shear modulus,

Fn~h!54h2A~cl2v !h11A~cl1v !h21@~v2cs!h21#

3@~v1cs!h21#2clcsF2h22
1

cs
2 ~vh21!2G2

3A12~v2cs!hA~v1cs!h21H@12~v2cs!h#

3H@~v1cs!h21#, (9)

Fd~h!516h4@~cl2v !h11#@~cl1v !h21#@~v2cs!h21#

3@~v1cs!h21#1cl
2cs

2F2h22
1

cs
2 ~vh21!2G4

, (10)

s1~h!

s1S 1

v D 5expF2
vh21

p E
1/~cl2v !

` tan21@V~r !#

~vr 11!~r 1h!
drG , (11)

and
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The crack-face displacement depending only on the ratiox/t
implies that any given displacement leveld(w)5d(x/t) radiates
out along thex-axis at a constant speedw5x/t ~@2,33#!. As dis-
cussed in the next section, this has important implications on
negation of the sliding displacement in the fundamental solu
by the moving dislocation solution.

2.3 Stress Intensity Factor Around a Suddenly Stopping
Crack. The method used to determine the stress intensity fa
in this section is same as that developed by Freund@2,33#. At any
instantt.t* , the sliding displacement needs to be negated fr
the current crack-tip positionx5vt in the fundamental solution to
x5vt* , where the crack tip is supposed to stop moving. T
corresponding speedw5x/t ranges fromv to vt* /t. For a given
velocity w in this range, the time at which the correspondi
displacement leveld(w)5d(x/t) arrives at the stopped crack-ti
locationx5vt* is

tw5
vt*

w
. (13)

The stress intensity factor due to a moving dislocation star
to propagate att50 with velocity w and Burgers vectorb is
bk0(t,w), as given in~3!. If a dislocation with Burgers vectordd
begins moving at timet5tw , instead of att50, then the stress
intensity factor isk0(t2tw ,w)dd. Since bothd in ~7! and tw in
~13! are prescribed functions ofw, the stress intensity factor ca
be summed fromv to vt* /t with respect tow. Stresses in the
fundamental solution are not singular aroundx5vt* because the
current crack tip already propagates tox5vt. In other words, only
the moving dislocation solution contributes to the stress inten
factor KII at the stopped crack tipx5vt* . This givesKII as

KII ~ t !52E
v

vt* /t
k0~ t2tw,w!

dd

dw
dw. (14)

The substitution of~7! and ~13! into ~14! and the change of inte
gration variable toh51/(v2w) give the analytic expression o
the stress intensity factor at the stopped crack tip as

KII ~ t !52A2cs

p

2m

pcR
S 12

cs
2

cl
2D PV

3E
1/@v~12t* /t !#

1` ~v1cR!h21

Av~ t2t* !h2tA~v1cs!h21

3s02 S 2
h

vh21
D Im@U2~h!#dh, (15)

wherePV stands for the Cauchy principal value integral beca
of the possible Cauchy-type singularity around 1/(v2cR) , and
s02 and Im@U2# are given in~5! and ~8!, respectively.

It can be shown, after some lengthy calculations, that the st
intensity approaches its equilibrium limit as timet→1`,

KII ~`!5t*A 2

pvt*
, (16)
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where the right-hand side is the stress intensity factor for a st
crack tip subjected to a pair of concentrated shear forcest* at a
distancevt* on the crack faces behind the tip. It is also interesti
to study the other limit,t→t* 10, i.e., immediately after the crac
tip stops moving. For crack-tip velocityvÞ&cs , stresses around
an intersonically propagating crack tip changes from a weak
gularity (r 2q,q,1/2) ~@18,21–23,25,32#! to the conventional
square-root singularity (r 21/2) as the crack tip suddenly stop
moving, but the stress intensity factor in~15! remains zero at this
instant t5t* . For crack-tip velocityv5&cs , the propagating
crack tip also has the square-root singularity, and the stress in
sity factor in ~15! does not vanish att5t* , but becomes 0.68
times the equilibrium valueK(`) for Poisson’s ration51/3.
These observations imply that, contrary to subsonic crack grow
the dynamic stress intensity factor does not reach its static co
terpart instantaneously once an intersonically propagating c
tip suddenly stops moving. In fact, this is quite reasonable beca
both shear and Rayleigh waves are trailing behind the inters
cally propagating crack tip. As the crack tip suddenly stops pro
gating at timet5t* , the time for the shear and Rayleigh waves
reach the stopping crack tip aret5vt* /cs andt5vt* /cR , respec-
tively. It will be interesting to examine the stress intensity factor
the stopping crack tip after all waves have passed, i.et
.vt* /cR .

Figure 1 shows the stress intensity factorKII in ~15! for a
suddenly stopping crack tip for three crack-tip velocities,v/cs
51.1,&, and 1.7, whereKII is normalized by its equilibrium
valueKII (`), and timet is normalized by the crack propagatio
time t* . Once the crack tip stops moving, the stress intens
factor rapidly increases to a finite value, and then starts to
crease. A sharp vertex in the figure corresponds to the arriva
the shear wave (t5vt* /cs). The stress intensity factor approach
to negative infinity once the Rayleigh wave arrives (t5vt* /cR
20). However, immediately after the Rayleigh wave arrivest
5vt* /cR10), the stress intensity factorKII reaches its equilib-
rium valueKII (`). This indicates that, even though the dynam
stress intensity factor does not reach its equilibrium value ins
taneously once an intersonically propagating crack tip sudde
stops moving, the equilibrium value is reached after all wav
have passed. In other words, the stress intensity factor arou
suddenly stopped intersonic crack tip displays a finite delay
reaching its static counterpart, contrary to the case of subs
crack growth. It also behaves different from a suddenly stopp
dislocation, for which the corresponding static dislocation fie
is approached only asymptotically~i.e., as time approaching
infinity!.

3 Concluding Remarks
In Part I of this paper~@32#! we obtained the fundamental so

lution for an intersonically propagating crack subjected to a p
of suddenly applied concentrate shear forces on the crack face
the present study we have studied the crack-tip behavior and s
intensity factor when the intersonically propagating crack tip
suddenly arrested. It is established that, unlike subsonic c
growth ~@1–3#!, the dynamic crack-tip stress intensity does n
instantaneously reach its equilibrium value when an intersonic
propagating crack tip suddenly stops moving. The equilibriu
stress intensity factor is reached after a finite delay, i.e., after
~shear and Rayleigh! waves have passed the stopped crack
Because of these observations, one cannot obtain the solutio
Transactions of the ASME
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Fig. 1 The stress intensity factor, K II , around a suddenly
stopped crack tip that was propagating intersonically; K II„`… is
the equilibrium value of the stress intensity factor; time t is
normalized by the crack propagation time t * ; Poisson’s ratio
nÄ1Õ3; the crack tip velocities are „a… vÄ1.1c s , „b… vÄ&c s ,
and „c… vÄ1.7c s , respectively, and c s is the shear wave speed
Journal of Applied Mechanics
nonuniform intersonic crack propagation from its counterpart
uniform crack growth, as suggested by Freund for subsonic cra
~@2,3#!.
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Elastic Solutions for a Solid Rotating
Disk With Cubic Anisotropy

F. Zhou1 and A. Ogawa
Aeroengine Division, National Aerospace Laboratory,
7-44-1 Jindaijihigashi, Chofu, Tokyo 182-8522, Japan

Elastic solutions of a rotating solid disk made of cubic anisotro
material are obtained using direct displacement method. D
placement, strain, and stress distributions within the disk are
pressed as simple functions of polar coordinates.
@DOI: 10.1115/1.1406958#

1 Introduction

Rotating disks are important structural components in turbo
chinery or flywheel systems. Finding elastic solutions of a rotat
disk is always a critical issue. The problem of isotropic disk
quite simple~@1#!. If the disk is anisotropic, the problem becom
complicated. Two typical anisotropy forms are cylindrical~polar!
orthotropic and Cartesian (XY) orthotropic. In the former case
closed-form solutions are obtainable because the deformatio
the disk is cylindrically symmetric~@2–8#!. In the latter case, the
seemingly simple problem turns out to be difficult to solve. The
were some works dealing with the Cartesian orthotropic d
problem ~@9,10#!, where the stress functions of Lekhnitskii@11#
were used as the start point of the analyses. Closed-form solu
were obtained only for some special cases.

Among the general Cartesian orthotropic materials,cubic an-
isotropicmaterials are a special category. These materials have
same elastic property in the material principal directions. So
examples of cubic anisotropic materials are cubic single crys
and balanced crossply (@0/90#s) laminates. Even for this simple
type of anisotropy, solutions are still difficult to obtain. Recent
Vigdergauz, and Givoli presented a perturbation method to a

1Present address: Department of Mechanical Engineering, Johns Hopkins Un
sity, 3400 North Charles Street, Baltimore, MD 21218.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nov. 1
2000; final revision, May 29, 2001. Associate Editor: A. K. Mal.
Copyright © 2Journal of Applied Mechanics
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lyze thermal stress state in asolid disk ~@12#!. Their method is
limited to weakanisotropic material and is also an approxima
method.

In our group, centrifugal spin experiments have been perform
to test the bursting strength of plain-woven and@0/90# laminated
C/C composites. The specimens are thin annular ring disks.
finite element method was used to evaluate the experimenta
sults~@13#!. We also used the Ritz method to analyze the proble
Though no exact solutions were obtained forrings, we found that
for a solid, cubic anisotropicrotating disk, simple closed-form
elastic solutions exist. The results are reported below.

2 Formulation
The problem is illustrated in Fig. 1. The disk, with radiusR and

densityr, is rotating at angular speedv. Cartesian and polar co-
ordinate systems are established, with theX-axis as one material
principal direction. The disk material is cubic anisotropic wi
Young’s modulus:Ex5Ey5E; shear modulus:Gxy5G; and
Poisson’s rationxy5nyx5n. More general, we assume that th
disk is loaded by a uniform external tensile stresss0 , which may
come from the tension of blades attached to the disk.

iver-

2,
Fig. 1 Geometry
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We limit the problem to the plane stress case. The case of p
strain can be treated similarly when certain transformations
elastic parameters are made. Because of material anisotropy
displacement components in radial and hoop directionsur anduu
are functions of polar coordinates (r ,u):

ur5ur~r ,u!, uu5uu~r ,u!.

The strain components in polar coordinates are

H « r

«u

g ru

J 55
]ur

]r
ur

r
1

]uu

r ]u
]ur

r ]u
1

]uu

]r
2

uu

r

6 . (1)

Cubic anisotropic materials have three basic elastic parame
The constitutive relationship in Cartesian coordinates is

H sx

sy

txy

J 5Ẽ0H «x

«y

gxy

J 5
E

12n2 F 1 n 0

n 1 0

0 0
~12n2!G

E

G H «x

«y

gxy

J .

In polar coordinates, the constitutive relationship is

H s r

su

t ru

J 5Ẽ~u!H « r

«u

g ru

J 5
E

4~12n2! F crr cru crs

cuu cus

Sym. css

G H « r

«u

g ru

J .

(2)

The elastic matrixẼ(u) is symmetric. Its elements are express
as follows:

crr 5cuu531a1~12a!n1~12a!~12n!cos 4u

cru5211a2~31a!n1~12a!~12n!cos 4u

crs52~12a!~12n!sin 4u

cus5~12a!~12n!sin 4u

css5~12n!@11a2~12a!cos 4u#

where the parametera52(11n)G/E represents the anisotropy o
the material. For an isotropic material:a51, Ẽ(u)5Ẽ0 , meaning
that the material properties are identical in all directions. Fo
crossply laminated~or woven! composite,a is smaller than 1; for
a single crystal superalloy,a is larger than 1.

The equilibrium equations are

]s r

]r
1

]t ru

r ]u
1

s r2su

r
1rv2r 50 (3.1)

]su

r ]u
1

]t ru

]r
1

2t ru

r
50. (3.2)

We wish to find the functions$ur ,uu%, $s r ,su ,t ru% and
$« r ,«u ,g ru% that simultaneously satisfy Eqs.~1!–~3! and other
boundary conditions.

3 Solutions for a Solid Rotating Disk
If the disk is solid, i.e., no internal holes exist, there is only o

boundary (r 5R), on which the stress conditions are

s r~R,u!5s0 , t ru~R,u!50. (4)

Based on experience, we propose that the displacement co
nents take the following form:

ur~r ,u!5ar1br31cr3 cos 4u
(5)

uu~r ,u!52cr3 sin 4u
82 Õ Vol. 69, JANUARY 2002
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wherea, b, c are unknown constants. At the disk center,ur anduu
are zero, omitting possible rigid translation. By direct different
tion, the strain and stress expressions are deduced. It is seen
that the second equilibrium Eq.~3.2! is automatically satisfied.
The other equilibrium Eq.~3.1! and the boundary conditions~4!
lead to four algebraic equations for three unknownsa, b, c. How-
ever, two of the four equations are identical, so that we get de
minate solutions for the unknown constants

a5
~12n!~112a1n!rv2R2

2E~113a1n2an!
1

12n

E
s0

b52
~12n2!~11a!rv2

4E~113a1n2an!
(6)

c5
~12n2!~12a!rv2

12E~113a1n2an!
.

Combining Eqs.~5! and ~6!, we get explicit expressions fo
displacementcomponents, and hence,strain and stresscompo-
nents. These quantities are expressed as

ur5
~12n!rv2r

4E~113a1n2an! F2~112a1n!R22~11a!~11n!r 2

1
~12a!~11n!

3
r 2 cos 4uG1

12n

E
s0r

(7)

uu52
~12n2!~12a!rv2

12E~113a1n2an!
r 3 sin 4u

« r5
~12n!rv2

4E~113a1n2an!
@2~112a1n!R223~11a!~11n!r 2

1~12a!~11n!r 2 cos 4u#1
~12n!s0

E

«u5
~12n!rv2

4E~113a1n2an!
@2~112a1n!R22~11a!~11n!r 2

2~12a!~11n!r 2 cos 4u#1
~12n!s0

E
(8)

g ru52
~12n2!~12a!rv2r

2E~113a1n2an!
sin 4u

s r5
~112a1n!~R22r 2!

2~113a1n2an!
rv21s0

(9)

su5
~112a1n!R22~11n12an!r 2

2~113a1n2an!
rv21s0 , t ru50.

These functions simultaneously satisfy governing Eqs.~1!–~3!
and boundary condition~4!. They are therefore the required elast
solutions for the present problem. For isotropic materials,a51,
Eqs.~7!–~9! render the same results as those given in@1#.

From Eq.~9!, it is seen that shearing stress componentst ru is
zero everywhere within the disk; the normal stress compone
are independent of the coordinateu. This means that, although th
deformation of the disk is not cylindrically symmetric whenaÞ1,
the stress distribution within the disk is always cylindrically sym
metric.

The maximum stress values appear at the center of the d
When the external loadings0 is omitted, these values are

~s r !max5~su!max5
~112a1n!rv2R2

2~113a1n2an!
. (10)
Transactions of the ASME
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A New Wave Technique for Free
Vibration of a String With
Time-Varying Length

S.-Y. Lee
Associate Professor, Department of Mechanical
Engineering, Sogang University, Sinsudong, Mapoku,
Seoul 121-742, Korea
e-mail: sylee@sogang.ac.kr. Mem. ASME

M. Lee
Associate Professor, Department of Mechanical
Engineering, Sejong University, Kunjadong, Kwanjinku,
Seoul 143-747, Korea. Assoc. Mem. ASME

We introduce a new technique to analyze free vibration of a string
with time-varying length by dealing with traveling waves. When
the string length is varied, the natural frequencies and vibration
energy are not constant. Thus, free response is not represented by
discrete standing waves but by traveling waves, and a given phase
of oscillation travels along the string. String tension and nonzero
instantaneous transverse velocity at the moving boundary results
in energy variation. When the string undergoes retraction, free
vibration energy increases exponentially with time, causing dy-
namic instability. The new wave technique gives the time-varying
natural frequency and the exact amount of energy transferred into
the vibrating string at the moving boundary.
@DOI: 10.1115/1.1427337#

1 Introduction
Strings and beams, with time-varying length, are the common

models of many mechanical systems such as ropes of elevators,
mining lifts, and type-supporting wires of typewriters. Time-
dependent continuous models are often used for precise mechani-
cal systems such as flexible appendages under retraction motion
on spacecrafts, and robotic manipulators with prismatic joints
~@1,2#!. TheSpaghetti problemis the typical example for unstable
motion of a time-varying system~@3,4#!.

A similar continuous model is an axially moving system, in-
cluding belts, chains, tapes, paper sheets, and pipes conveying
fluids, treated by many authors~@5,6#!. In this problem, the con-
tinuous system translates at a velocity between two fixed supports
with constant separation. In recent years, Lee and Mote@7,8# stud-
ied the vibration characteristics and energy transfer mechanisms
between a moving string and various boundaries or constraints
using the traveling wave method.

In general, the free vibration of continuous systems with a con-
stant length is analyzed by applying the method of separation of
variables. However, the classical method for treating constant
length systems is not applicable to continuous systems with time-
varying length, because boundary conditions are dependent on
time.

Yamamoto et al.@9# studied the free and forced vibrations of a
string with variable length using a perturbation method. Kotera
@10# solved the same problem by defining new parameters to ap-
ply the separation of variable method to the time-varying string.

9,
When a51, we getsmax(iso)5(31n)rv2R2/8, a formula fre-
quently given in design handbooks.

We define the maximum stress ratiob as

b5
smax~aniso!

smax~ iso!
5

4~112a1n!

~113a1n2an!~31n!
. (11)

For ordinary cubic anisotropic materials,n.0, a.0. The varia-
tion of theb value in this region is not significant. The maximu
stress ratio varies between values 8/9~a→`, n→0! and 4/3
~a→0, n→0!.

4 Concluding Remarks
Although the solutions~7!–~9! are identical to the results o

Chang @14#, we obtained these results by an alternative, m
direct approach. In our approach, we do the analysis by follow
steps:

1. Assume the type of displacements functions, which con
unknown coefficients.

2. Deduce the strain and the stress functions.
3. Substitute the stress function into equilibrium and BC eq

tions, to determine the unknown coefficients.
4. Confirm that all governing equations are satisfied.

If the disk is not solid, i.e., there is a hole in the center, then
inner boundary and the outer boundary influence on each othe
a result, the stress field within the ring is distorted, and it is i
possible to find simple displacement functions that satisfy all g
erning equations. For the ring problem, the approximate anal
based on variation theory~finite element method or Ritz method!
are effective. The analyzing steps outlined above can be e
adapted for Ritz analysis, only that the unknown coefficients
determined by the minimum potential theory instead. Moreov
the displacement functions of the solid disk problem, namely~5!,
provide good hints for assuming the deformation shape of the
~@15#!.
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waves have the same frequency, and all the points of the string
recover their original phases.
similar system using the image method. Terumichi et al.@12# in-
vestigated the free response of an axially moving string with tim
varying length and a mass-spring boundary; that is the comm
model for an elevator system.

In this paper, the time-varying natural frequency and energy
free vibration of a string with variable length are investigat
using traveling waves. By calculating the frequency variation a
energy transferred while traveling waves reflect from the mov
boundary, we derive the exact solutions for the time-depend
frequency and energy.

2 Free Vibration Analysis

2.1 The Equation of Motion. A string with time-varying
length is shown in Fig. 1. The linear equation of motion for t
transverse vibration,w(x,t) of the string is

r
]2w

]t2 2P
]2w

]x2 5 f ~x,t !. (1)

Here the string tensionP and linear densityr are constant, and
f (x,t) is external distributed force. Both boundaries are vertica
fixed, but the right boundary moves at a constant velocityv. The
time-dependent boundary conditions are

w~0,t !5w~ l ~ t !,t !50

where the string length isl (t)5 l 06vt.

2.2 Standing and Traveling Waves. In the infinite string
problem, all frequencies are permissible in free vibration. Ho
ever, for a finite string with boundary conditions, free oscillati
is described by standing waves~natural modes! with discrete fre-
quencies. In general, a standing wave can be decomposed into
equal but opposite traveling waves,

Fig. 1 String with length varying at a constant velocity v
84 Õ Vol. 69, JANUARY 2002
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w~x,t !5A sinkx cosvt5
1

2
A sin~kx2vt !1

1

2
A sin~kx1vt !.

(3)

Here the first and second terms of the right-hand side indicate
right-going and left-going traveling waves, respectively. Wa
number isk5v/c and the wave propagation speed isc5AP/r.
Consider the string motion with two opposite traveling wav
with different frequencies,v r andv l . Using trigonometric iden-
tities, the wave motion becomes

w~x,t !5
1

2
A sin~kx2v r t !1

1

2
A sin~kx1v l t !

5A sinS kx2
v r2v l

2
t D cosS v r1v l

2
t D . (4)

Equation~4! describes that free vibration by the two waves w
different frequencies is no longer represented by standing wa
It is seen that the phase is not constant along the string, and t
is a phase shift between any two points. A given phase of osc
tion travels downstream at a speed (v r2v l)/2k if v r.v l or up-
stream ifv r,v l . The speed is generally described as thephase
propagation speed.

2.3 Time-Varying Natural Frequency. Figure 2~a! shows
that an initial standing wave of the fundamental frequency at
50 is decomposed into two equal but opposite traveling wav
When the right-going wave is incident on the moving bounda
the reflected wave has a different frequency. As shown in F
2~b!, the changed wave frequency is less than the incident o
when the string is being lengthened. The string motion at
instant is a superposition of the two traveling waves with differe
frequencies. The phase of the superposed motion of the orig
and reflected traveling waves lags behind that of the original
opposite traveling waves. Thus, it is similar to the case of Eq.~4!
that the superposed wave motion is described as a phase-trav
wave where a given phase of oscillation travels downstre
However, in this case, both wave number and frequency cha
during reflection at the moving boundary. When the string len
is decreased, a phase of oscillation travels upstream.

Figure 2~c! shows how the wave motion recovers its origin
phase after a cycle. As the initial left-going wave is reflected fro
x50, the reflected wave keeps its original frequency. When
wave propagates and reflects from the moving boundaryx
5 l (t), the wave frequency changes. At this time, all traveli
Fig. 2 Traveling wave pattern of the fundamental vibration mode over a
period
Transactions of the ASME
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The first periodT11 of the fundamental mode is defined as th
time for the string to recover its original phase. It is actually equ
to the time for a traveling wave to pass through the string dow
stream and upstream. The oscillation period is calculated as
lows: For the increasing length problem, the distance for a le
going wave starting atx5 l 0 to reachx5 l 01vT11, after reflection
at x50, givescT1152l 01vT11. Solving this expression for the
first period of the fundamental mode yields

T115
2l 0

c2v
. (5)

The corresponding natural frequency isv115p(c2v)/ l 0 . When
v50, Eq.~5! becomes the fundamental period of the fixed leng
string.

The vibration period and natural frequency are also given
the phase-closure principle~@13,14#!. As a wave propagates down
stream and upstream, the total phase changes becomek( l 01vT)
andkl0 , respectively. The phase difference, induced during refl
tion from both vertically fixed boundaries, isp. If the total phase
change is an integer multiple of 2p, the condition describes the
natural frequency of the system. The total phase change ove
first cycle of thenth vibration mode, satisfying the principle

vn1S l 01vTn1

c
1

l 0

c D1p1p52pn, (6)

gives the first natural frequency of thenth vibration mode,

vn15
p~cn2v !

l 0
, (7)

wheren51,2,3,̄ . The natural frequency of the fundamental v
bration mode afterm cycles is also given by

v1m5
p~c2v !

l m21
5

p~c2v !m

l 0~c1v !m21 (8)

wherel m5 l m211vT1m is the string length att5(
k51
m21T1k .

When the length of the string decreases, the corresponding
riod and natural frequency are obtained by replacingv with 2v in
Eqs. ~5!–~8!. Figure 3 shows time-dependent periodsT1m
52p/v1m of the fundamental mode for both increasing and d
creasing lengths whenv50.1c/ l 0 .

Fig. 3 Time-varying vibration periods of the fundamental
mode when the string length changes at vÄ0.1c Õ l 0
Journal of Applied Mechanics
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2.4 Free Response by the Superposition of Traveling
Waves. Time-invariant natural modes do not exist for this tim
varying string. However, we can represent free response by
composing initial standing waves into the corresponding trave
waves, and by superposing the traveling waves at a certain t
Figures 4~a! and ~b! show the motion history of the fundament
mode over a period by superposing traveling waves for both ca
of the increasing and decreasing lengths, respectively. The re
are plotted with the perturbation solution by Yamamoto et al.@9#.
It is noted that the traveling wave method gives the exact solu
for free vibration, compared to the approximate solution.

In the figure, all the points of the string start to vibrate with t
same phase att50. As time goes, the vibration at the point dow
stream lags behind that at the point downstream untilt5T11.
While the string displacements for the constant length problem
zero att50.25T11 and 0.75T11, the nonconstant phase make th
time-varying string having a different displacement pattern
those times. All the string points recover their original phases a
the fundamental period.

Fig. 4 String motion history during a period when vÄ0.2c Õ l 0
for the initial displacement of the fundamental mode; „a… in-
creasing length, „b… decreasing length

Fig. 5 Power flow by string tension at the moving boundary;
„a… increasing length, „b… decreasing length
JANUARY 2002, Vol. 69 Õ 85
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3 Free Vibration Energy

3.1 Energy Reflection Coefficient. Lee and Mote@7# de-
fined the energy reflection coefficient to quantify energy tra
ferred when a wave is reflected at various boundary supports.
energy reflection coefficientR is defined as the ratio between th
incident wave energy and reflected one,

R5
Er

Ei
5

Zrv r

Ziv i
g2. (9)

HereZ5P/c is the mechanical impedance of the string, and
subscriptsi andr denote incident and reflected waves.r 5Ar /Ai is
the amplitude ratio of the incident and reflected waves, tha
usually called as thereflection coefficient. For the fixed length
string, the energy reflection coefficient,R5r 2, is determined by
only the reflection coefficient, becauseZi5Zr andv i5v r . How-
ever, when the string length changes with time (v iÞv r) or the
string translates axially between the two fixed boundariesZi
ÞZr), the reflected energy is different from the incident oneR
Þ1), even though the amplitude of the reflected wave is equa
the incident one (r 51).

3.2 Energy Variation. When a traveling wave reflects from
the fixed boundary (x50), the amplitude and impedance of th
reflected wave are equal to the incident ones. However, when
wave reflects from the moving boundary atx5 l (t), the reflected
frequencyv r differs from the incident onev i . By the use of Eq.
~5!, the frequency ratio

v r

v i
5

l 0

l 01vT11
5

c2v
c1v

(10)

is expressed in terms of by the wave speed and the moving ve
ity. Finally, the energy reflection coefficient is given by

R5
Er

Ei
5

v r

v i
5

c2v
c1v

. (11)

When the string length increases, the energy coefficient bec
less than 1, and free vibration energy decreases. The wave en
En after n periods becomes

En5E0Rn (12)

whereE0 is the initial energy of the string. For the case of d
creasing length, the energy coefficient becomesR5(c1v)/(c
2v).1. The free vibration energyEn increases exponentially
with time. The source of the energy increase is the external en
required for delivering the boundary support atv. When a wave
reflects from the moving boundary, a part of the external energ
transferred from the boundary into the vibration energy.

3.3 Energy Transfer Mechanism. The transverse displace
ment of the vertically fixed but moving boundary is always ze
However, when the string length increases atv, the instantaneous
velocity is2vwx( l ,t), as shown in Fig. 5~a!. This nonzero veloc-
ity causes power flow together with the vertical component
string tension,Pwx( l ,t). The magnitude of the power flow i
given by

Pl52Pvwx
2~ l ,t !,0. (13)

This value is always negative, and the energy is transferred f
the string to the moving boundary. For the decreasing length p
lem, the energy transfer mechanism is contrary and the assoc
power flow is always positive~Fig. 5~b!!. In this case, the energ
is transferred into the string.
86 Õ Vol. 69, JANUARY 2002
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3.4 Comparisons. The analytical solution~12! for the free
vibration energy of the time-varying string is compared with tw
earlier results solved by the approximated methods; a perturba
method ~@9#! and Kotera’s method~@10#!. Figure 6 shows free
vibration energy when the length increases atv50.1c/ l 0 . The
vibration energy by the traveling wave method at each cycle
culated from Eq.~12!, and it is marked as ‘‘•’’. Vibration energies
by the two approximated methods are calculated by implemen
the numerical integration of free responses derived in the pap
It is seen that the vibration energy decreases with at a ratR
50.9/1.1581.8 percent over each period. The traveling wave
lution, calculated from the simple Eq.~12!, gives the exact solu-
tion of the free vibration energy. The approximated solution by
perturbation method is in a good agreement with the exact o
However, Kotera’s solution shows a sinusoidal disturbance aro
the exponentially decreasing value.

Figure 7 shows the vibration energy when the length decrea
at v50.1c/ l 0 . As the string length gets closer to zerot
→10 sec), the corresponding energy shows a dramatic incre
and it becomes infinite at the zero length. This explains qual
tively the unstable motion of various continuous systems with
decreasing length.

When the moving velocity is increased tov50.2c/ l 0 , free vi-
bration energies for increasing and decreasing cases are plott
Figs. 8~a!and ~b!. The rate of change of free vibration energy
larger than the case ofv50.1c/ l 0 . For the decreasing case, a ha

Fig. 6 Free vibration energy when the length increases at
vÄ0.1c Õ l 0

Fig. 7 Free vibration energy when the length decreases at
vÄ0.1c Õ l 0
Transactions of the ASME
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Fig. 8 Free vibration energy when vÄ0.2c Õ l 0 ; „a… increasing length, „b…
decreasing length
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of the initial energy increases only after a period (E51.5E0).
There exists a little difference between the traveling wave
perturbation results after six periods. This is because the incr
of the moving velocity amplifies the error of the approximat
solution, while the linear solution by the traveling wave is exa

4 Conclusions
In this paper, the time-varying frequency and energy of f

vibration of a string with variable length are analyzed by a n
wave technique. When the string length increases with a cons
velocity v, the first natural frequency thenth vibration mode is
given byvn15p(cn2v)/ l 0 , and vibration energy decreases a
constant ratioR5(c2v)/(c1v) over a cycle. A given phase o
oscillation travels from the fixed boundary toward the movi
boundary at a phase propagation speed. When the string leng
being shortened, free vibration energy increases exponent
with time, causing dynamic instability. In this case, string tens
and nonzero instantaneous transverse velocity at the mo
boundary results in positive power flow, and energy is transfer
from the moving boundary into the vibrating string.
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On the Accuracy of Benchmark Tables
and Graphical Results in the
Applied Mechanics Literature1

J. Helsing
Department of Solid Mechanics and NADA, Royal
Institute of Technology, SE-100 44 Stockholm, Sweden
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A. Jonsson
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Converged normalized stress intensity factors for a matrix cr
interacting with an elastic cylinder are presented. The new res
differ from previously published results in several examples.
need for better error analysis in computational fracture mecha
ics is emphasized.@DOI: 10.1115/1.1427691#

Introduction

The purpose of this note is to initiate a discussion of the ac
racy of benchmark tables and graphical results presented in
applied mechanics literature. Accurate benchmark results are
sential in the development of new software. Programming er
easily occur. If one cannot find at least three-digit accurate res
for standard nontrivial setups to verify against, many errors w
go unnoticed.

Stress intensity factors are frequently tabulated and present
graphs. These factors are considered difficult to compute, e
though the underlying physical problem often is well conditione
The chief difficulties are to find and to implement efficient n
merical algorithms and to assess the accuracy of the final re
There are many pitfalls. Finding the correct branch of the squ
root of complex numbers in the context of computing weig
functions is just one example of a nonstandard task which m
occur and where even the properties of the compiler must be ta
into account. Also, the orientation of coordinate systems and
various normalization factors and symbols used by different
thors may cause confusion. Not surprisingly, many of the num
cal results presented in the literature are of questionable qua
Convergence studies are seldom, if ever, presented. We be
that there is a particular need to reexamine previously publis
results in this area.

In order to illustrate the points made above we consider
example involving two papers presenting results for normali
stress intensity factors of a matrix crack in the presence of
elastic cylinder: one classic paper by Erdogan, Gupta, and
wani @1#, and a recent paper by Cheeseman and Santare@2#. In the
latter paper the authors validate their algorithm by comparing w
results from the former paper. ‘‘Good agreement’’ is noted, but
statement is not supported by numerical results.

1This work was supported by NFR, TFR, and The Knut and Alice Wallenb
Foundation under TFR contracts 98-568 and 99-380.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct. 1
2000; final revision, Aug. 21, 2001. Associate Editor: A. Needleman.
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Results
We simply recompute some results of Erdogan, Gupta, and

wani @1# and Cheeseman and Santare@2# using an algorithm based
on a pair of integral equations for the crack and inclusion probl
developed by Helsing and Peters@3#. The integral equations, num
ber ~48! and number~49! in Helsing and Peters@3#, are of Fred-
holm’s second kind with compact operators. This allows for sta
convergence. The integral equations are solved using a Nys¨m
scheme with composite quadrature on a uniform mesh. We
16-point Gauss-Legendre quadrature on all quadrature panel
cept for the two panels containing the crack tips. There we
Gauss-Jacobi quadrature. Great care is devoted to avoiding ro
off error throughout the code. The setups under investigation
depicted in Fig. 1. The shear moduli of the matrix and of t
cylinder arem151 and m2523. The Poisson’s ratios of matrix
and of the cylinder aren150.35 and n250.30. The two-
dimensional bulk modulusk, used in Helsing and Peters, isk5m/
~122n!. This bulk modulus should not be mixed up with th
‘‘kappa’’ used by many authors including Erdogan, Gupta, a
Ratwani. The latter ‘‘kappa’’ corresponds to the quantity¸53
24n, in Muskhelishvili’s notation.

Our new converged results do not always agree with the pr
ously published results. This can be seen in Table 1 and in Fig
In many cases the results differ considerably, in digits and als
signs ~for the secondary factorsk21 and k22!. It is hazardous to
speculate in the reasons for this discrepancy. One thing is cer
however. Our results have converged stably. See Fig. 3 for
example where the relative error for a stress intensity factor se
on a level of 10215 as the mesh is refined.

Discussion
This note stresses the need for more error analysis in comp

tional fracture mechanics. An algorithm may be correct in a ma
ematical sense. The results it produces on a computer may st
wrong if the problem is not properly resolved, if the algorithm
unstable, or if there is a bug in the code or in the compiler.

It is difficult to prove, rigorously, that a numerical solution to
nontrivial problem is accurate to a certain number of digits. A
curate benchmarks can, in our opinion, best be established by
agreement of several calculations performed by independen
vestigators. To this end, the presentation of numerical result
terms of numbers is essential. Graphs alone are not sufficient.
presentation of convergence studies, further, helps remove do
about underresolution and instability. We encourage the inclus
of this type of information in forthcoming papers. We challen
other scientists in computational mechanics to confirm or dispr
our new numerical results.

rg

0,

Table 1 Comparison between our new results and those of
Table 3 in Erdogan, Gupta, and Ratwani †1‡ for the geometry of
the left image in our Fig. 1. The relations between the shear
moduli of the inclusion and the matrix is m2Ä23m1 . The nor-
malized mode i stress intensity factor at crack-tip j is denoted
as k ij .

c/a k11
EGR k11

new k12
EGR k12

new k21
EGR k21

new k22
EGR k22

new

0.3 0.784 0.790 0.225 0.23520.004 20.023 0.072 0.073
0.5 0.792 0.797 0.341 0.34720.006 20.037 0.101 0.102
1.0 0.817 0.817 0.613 0.61320.005 20.067 0.057 0.061
1.5 0.839 0.833 0.763 0.755 0.00820.074 20.007 0.012
2.0 0.860 0.850 0.845 0.830 0.03420.058 20.021 0.018
3.0 0.905 0.897 0.953 0.936 0.08920.035 20.001 0.067
4.0 0.951 0.947 1.014 1.003 0.117 0.032 0.002 0.0
8.0 1.020 1.022 1.043 1.043 0.088 0.03220.026 0.032
2002 by ASME Transactions of the ASME
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Fig. 1 Left, a straight crack outside an inclusion under uniaxial tension. This is the setup of Erdogan, Gupta, and Ratwani
†1‡ corresponding to their Table 3. Right, an arc-shaped crack outside a circular inclusion under biaxial tension. This is the
setup of Cheeseman and Santare †2‡ corresponding to their Fig. 8.

Fig. 2 Normalized mode I stress intensity factors of the setup in Fig. 8 in
Cheeseman and Santare †2‡ „the right image of our Fig. 1 … versus dimensionless
distance for a circular arc-shaped crack interacting with an inclusion
urnal of Applied Mechanics JANUARY 2002, Vol. 69 Õ 89
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Fig. 3 Convergence of the stress intensity factor k 11 of Erdogan, Gupta, and
Ratwani †1‡ for cÄ2a in the left image of our Fig. 1. The mesh is uniformly re-
fined. The number of distgretization points is N. Double precision arithmetic is
used. The reference value k 11Ä0.8497339474770513 is computed with 592, or
more, discretization points in quadruple precision arithmetic. Relative errors
smaller than machine epsilon as displayed as 1.11 "10À16.
n
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rical
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Error Analysis With Applications in Engineering, by W.
Szczepinski and Z. Kotulski. Lastran Corp., Rochester, N
2000.

REVIEWED BY M. OSTOJA –STARZEWSKI 1

This is a well-laid-out and well-written introductory book fo
engineers~especially mechanical engineers! interested in analysis
of random effects in mechanics. The key word here
introductory—as it would be suitable for an undergraduate~but
not really a graduate! course—as opposed to an advanced le
which would involve stochastic differential equations plus pos
bly random processes and fields. As such, the book therefore
fers an introduction to statistical error analysis methodology
anyone in solid/structural and/or rigid-body mechanics. With t
book, a mechanical~but also civil, aerospace, materials...! engi-
neer can learn concepts of applied probability theory—espec
calculus of random variables—through very clear expositions,
merous mechanics problems and examples~e.g., positioning accu-

1
Department of Mechanical Engineering, McGill University, 817 Sherbroo

Street West, Montreal, Quebec H3A 2K6, Canada.
Copyright © 2Journal of Applied Mechanics
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racy of robot manipulators!. Indeed, many people do need su
physical motivation to go through the basics of probability—a
this may define the potentially wide market for the book.

The book contains seven chapters plus an appendix. The c
ters are 1 Basic characteristics of error distribution; histogram
Sample points, random variables, and probability; 3 Functions
independent random variables; 4 Two-dimensional distribution
Two-dimensional functions; 6 Three-dimensional distributions
Three-dimensional functions of independent random variab
and the Appendix—Some useful definitions and facts of proba
ity theory. In all these chapters much attention has been paid to
practical significance of error analysis, although some backgro
on pertinent mathematical foundations has also been include

Both authors are well-established mechanicians—the first
being known for his work in plasticity theory, and the second o
for his studies in stochastic mechanics~specifically, stochastic
wave propagation!. Perhaps the only criticism that might be raise
is that there are other books on applied probability methods
engineering in the English speaking world. But the presenta
and scope of ‘‘Error...’’ are not in overlap with any one of these
and some aspects are truly original. The book is therefore rec
mended.
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